• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2024
    • vol. 8, nº 6, june 2024
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2024
    • vol. 8, nº 6, june 2024
    • Ver ítem

    KoopaML: A Graphical Platform for Building Machine Learning Pipelines Adapted to Health Professionals

    Autor: 
    García-Peñalvo, Francisco
    ;
    Vázquez-Ingelmo, Andrea
    ;
    García-Holgado, Alicia
    ;
    Sampedro-Gómez, Jesús
    ;
    Sánchez-Puente, Antonio
    ;
    Vicente-Palacios, Víctor
    ;
    Dorado-Díaz, P. Ignacio
    ;
    Sánchez, Pedro L.
    Fecha: 
    06/2024
    Palabra clave: 
    artificial intelligence; human-computer interaction (HCI); health; information system; medical data; medical images; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Citación: 
    Francisco García-Peñalvo, Andrea Vázquez-Ingelmo, Alicia García-Holgado, Jesús Sampedro-Gómez, Antonio Sánchez-Puente, Víctor Vicente-Palacios, P. Ignacio Dorado-Díaz, Pedro L. Sánchez (2024). "KoopaML: A Graphical Platform for Building Machine Learning Pipelines Adapted to Health Professionals", International Journal of Interactive Multimedia and Artificial Intelligence, vol. 8, issue Regular Issue, no. 6, pp. 112-119. https://doi.org/10.9781/ijimai.2023.01.006
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/14314
    DOI: 
    https://doi.org/10.9781/ijimai.2023.01.006
    Open Access
    Resumen:
    Machine Learning (ML) has extended its use in several domains to support complex analyses of data. The medical field, in which significant quantities of data are continuously generated, is one of the domains that can benefit from the application of ML pipelines to solve specific problems such as diagnosis, classification, disease detection, segmentation, assessment of organ functions, etc. However, while health professionals are experts in their domain, they can lack programming and theoretical skills regarding ML applications. Therefore, it is necessary to train health professionals in using these paradigms to get the most out of the application of ML algorithms to their data. In this work, we present a platform to assist non-expert users in defining ML pipelines in the health domain. The system’s design focuses on providing an educational experience to understand how ML algorithms work and how to interpret their outcomes and on fostering a flexible architecture to allow the evolution of the available components, algorithms, and heuristics.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: KoopaML.pdf
    Tamaño: 2.114Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 8, nº 6, june 2024

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    338
    444
    102
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    151
    290
    57

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Application of Artificial Intelligence Algorithms Within the Medical Context for Non-Specialized Users: the CARTIER-IA Platform 

      García-Peñalvo, Francisco; Vázquez-Ingelmo, Andrea; García-Holgado, Alicia; Sampedro-Gómez, Jesús; Sánchez-Puente, Antonio; Vicente-Palacios, Víctor; Dorado-Díaz, P. Ignacio; Sánchez, Pedro L. (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2021)
      The use of advanced algorithms and models such as Machine Learning, Deep Learning and other related approaches of Artificial Intelligence have grown in their use given their benefits in different contexts. One of these ...
    • Promoting Open Education through Gamification in Higher Education: The OpenGame project 

      García-Holgado, Alicia; García-Peñalvo, Francisco; de la Higuera, Colin; Teixeira, Antonio; Ehlers, Ulf-Daniel; Brunton, James; Nascimbeni, Fabio ; Padilla-Zea, Natalia ; Burgos, Daniel (ACM International Conference Proceeding Series, 2020)
      Open education enables the transformation of higher education institutions to increase access to and quality of education, which is directly connected with the fourth sustainable development goal defined by UNESCO. Despite ...
    • Proposing a Machine Learning Approach to Analyze and Predict Employment and its Factors 

      García-Peñalvo, Francisco; Cruz-Benito, Juan; Martín-González, Martín; Vázquez-Ingelmo, Andrea; Sánchez-Prieto, José Carlos; Therón, Roberto (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2018)
      This paper presents an original study with the aim of propose and test a machine learning approach to research about employability and employment. To understand how the graduates get employed, researchers propose to build ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja