• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2024
    • vol. 9, nº 1, diciembre 2024
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2024
    • vol. 9, nº 1, diciembre 2024
    • Ver ítem

    A Feature Selection Approach Based on Archimedes’ Optimization Algorithm for Optimal Data Classification

    Autor: 
    Khrissi, Lahbib
    ;
    El Akkad, Nabil
    ;
    Satori, Hassan
    ;
    Satori, Khalid
    Fecha: 
    2024
    Palabra clave: 
    optimization; classification; feature selection; machine learning classifier; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/14313
    DOI: 
    https://doi.org/10.9781/ijimai.2023.01.005
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3246
    Open Access
    Resumen:
    Feature selection is an active research area in data mining and machine learning, especially with the increase in the amount of numerical data. FS is a search strategy to find the best subset of features among a large number of subsets of features. Thus, FS is applied in most modern applications and in various domains, which requires the search for a powerful FS technique to process and classify high-dimensional data. In this paper, we propose a new technique for dimension reduction in feature selection. This approach is based on a recent metaheuristic called Archimedes’ Optimization Algorithm (AOA) to select an optimal subset of features to improve the classification accuracy. The idea of the AOA is based on the steps of Archimedes' principle in physics. It explains the behavior of the force exerted when an object is partially or fully immersed in a fluid. AOA optimization maintains a balance between exploration and exploitation, keeping a population of solutions and studying a large area to find the best overall solution. In this study, AOA is exploited as a search technique to find an optimal feature subset that reduces the number of features to maximize classification accuracy. The K-nearest neighbor (K-NN) classifier was used to evaluate the classification performance of selected feature subsets. To demonstrate the superiority of the proposed method, 16 benchmark datasets from the UCI repository are used and also compared by well-known and recently introduced meta-heuristics in this context, such as: sine-cosine algorithm (SCA), whale optimization algorithm (WOA), butterfly optimization algorithm (BAO), and butterfly flame optimization algorithm (MFO). The results prove the effectiveness of the proposed algorithm over the other algorithms based on several performance measures used in this paper.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_9_1_3.pdf
    Tamaño: 624.8Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 9, nº 1, diciembre 2024

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    2026
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    218
    222
    226
    21
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    72
    105
    70
    4

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Issues of Visual Search Methods in Digital Repositories 

      Gaona-García, Paulo Alonso; Montenegro-Marín, Carlos; Gaona-García, Elvis; Gómez-Acosta, Adriana; Hassan-Montero, Yusef; Hassan-Montero, Yusef (International Journal of Interactive Multimedia and Artificial Intelligence, 12/2018)
      Repositories are important infrastructures which allow the dissemination of large collections of digital resources hosted in museums, libraries, academic institutions or specialized documentation centers. However, there ...
    • Smart Algorithms to Control a Variable Speed Wind Turbine 

      Farhane, Nabil; Boumhidi, Ismail; Boumhidi, Jaouad (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2017)
      In this paper, a robust adaptive fuzzy neural network sliding mode (AFNNSM) control design is proposed to maximize the captured energy for a variable speed wind turbine and to minimize the efforts of the drive shaft. Fuzzy ...
    • Deep Belief Network and Auto-Encoder for Face Classification 

      Bouchra, Nassih; Mohammed, Ngadi; Nabil, Hmina; Aouatif, Amine (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2019)
      The Deep Learning models have drawn ever-increasing research interest owing to their intrinsic capability of overcoming the drawback of traditional algorithm. Hence, we have adopted the representative Deep Learning methods ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja