Mostrar el registro sencillo del ítem
Iterative schemes for finding all roots simultaneously of nonlinear equations
dc.contributor.author | Cordero, Alicia | |
dc.contributor.author | Garrido, Neus | |
dc.contributor.author | Torregrosa, Juan Ramón | |
dc.contributor.author | Triguero-Navarro, Paula | |
dc.date | 2022 | |
dc.date.accessioned | 2023-02-16T12:22:52Z | |
dc.date.available | 2023-02-16T12:22:52Z | |
dc.identifier.citation | Cordero, A., Garrido, N., Torregrosa, J. R., & Triguero-Navarro, P. (2022). Iterative schemes for finding all roots simultaneously of nonlinear equations. Applied Mathematics Letters, 134, 108325. | es_ES |
dc.identifier.issn | 0893-9659 | |
dc.identifier.uri | https://reunir.unir.net/handle/123456789/14195 | |
dc.description.abstract | In this paper, we propose a procedure that can be added to any iterative scheme in order to turn it into an iterative method for approximating all roots simultaneously of any nonlinear equations. By applying this procedure to any iterative method of order p, we obtain a new scheme of order of convergence 2p. Some numerical tests allow us to confirm the theoretical results and to compare the proposed schemes with other known methods for simultaneous roots of polynomial and non-polynomial functions. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Applied Mathematics Letters | es_ES |
dc.relation.ispartofseries | ;vol. 134 | |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S089396592200235X?via%3Dihub | es_ES |
dc.rights | openAccess | es_ES |
dc.subject | dynamical plane | es_ES |
dc.subject | ehrlich method | es_ES |
dc.subject | iterative methods | es_ES |
dc.subject | memory schemes | es_ES |
dc.subject | nonlinear equations | es_ES |
dc.subject | simultaneous roots | es_ES |
dc.subject | Scopus | es_ES |
dc.subject | JCR | es_ES |
dc.title | Iterative schemes for finding all roots simultaneously of nonlinear equations | es_ES |
dc.type | Articulo Revista Indexada | es_ES |
reunir.tag | ~ARI | es_ES |
dc.identifier.doi | https://doi.org/10.1016/j.aml.2022.108325 |