• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 7, december 2022
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 7, december 2022
    • Ver ítem

    Brain Tumor Segmentation and Identification Using Particle Imperialist Deep Convolutional Neural Network in MRI Images

    Autor: 
    Khemchandani, Maahi Amit
    ;
    Jadhav, Shivajirao Manikra
    ;
    Iyer, B. R.
    Fecha: 
    12/2022
    Palabra clave: 
    tumor; deep belief network; local neighborhood structure; scattering transform; tumor characterization; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13935
    DOI: 
    https://doi.org/10.9781/ijimai.2022.10.006
    Dirección web: 
    https://ijimai.org/journal/bibcite/reference/3204
    Open Access
    Resumen:
    For the past few years, segmentation for medical applications using Magnetic Resonance (MR) images is concentrated. Segmentation of Brain tumors using MRIpaves an effective platform to plan the treatment and diagnosis of tumors. Thus, segmentation is necessary to be improved, for a novel framework. The Particle Imperialist Deep Convolutional Neural Network (PI-Deep CNN) suggested framework is intended to address the problems with segmenting and categorizing the brain tumor. Using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) Algorithm, the input MRI brain image is segmented, and then features are extracted using the Scatter Local Neighborhood Structure (SLNS) descriptor. Combining the scattering transform and the Local Neighborhood Structure (LNS) descriptor yields the proposed descriptor. A suggested Particle Imperialist algorithm-trained Deep CNN is then used to achieve the tumor-level classification. Different levels of the tumor are classified by the classifier, including Normal without tumor, Abnormal, Malignant tumor, and Non-malignant tumor. The cell is identified as a tumor cell and is subjected to additional diagnostics, with the exception of the normal cells that are tumor-free. The proposed method obtained a maximum accuracy of 0.965 during the experimentation utilizing the BRATS database and performance measures.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai7_7_4.pdf
    Tamaño: 1.208Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 7, nº 7, december 2022

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    11
    132
    95
    80
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    5
    90
    51
    29

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja