Mostrar el registro sencillo del ítem

dc.contributor.authorKhemchandani, Maahi Amit
dc.contributor.authorJadhav, Shivajirao Manikra
dc.contributor.authorIyer, B. R.
dc.date2022-12
dc.date.accessioned2022-12-16T10:45:19Z
dc.date.available2022-12-16T10:45:19Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/13935
dc.description.abstractFor the past few years, segmentation for medical applications using Magnetic Resonance (MR) images is concentrated. Segmentation of Brain tumors using MRIpaves an effective platform to plan the treatment and diagnosis of tumors. Thus, segmentation is necessary to be improved, for a novel framework. The Particle Imperialist Deep Convolutional Neural Network (PI-Deep CNN) suggested framework is intended to address the problems with segmenting and categorizing the brain tumor. Using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) Algorithm, the input MRI brain image is segmented, and then features are extracted using the Scatter Local Neighborhood Structure (SLNS) descriptor. Combining the scattering transform and the Local Neighborhood Structure (LNS) descriptor yields the proposed descriptor. A suggested Particle Imperialist algorithm-trained Deep CNN is then used to achieve the tumor-level classification. Different levels of the tumor are classified by the classifier, including Normal without tumor, Abnormal, Malignant tumor, and Non-malignant tumor. The cell is identified as a tumor cell and is subjected to additional diagnostics, with the exception of the normal cells that are tumor-free. The proposed method obtained a maximum accuracy of 0.965 during the experimentation utilizing the BRATS database and performance measures.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 7, nº 7
dc.relation.urihttps://ijimai.org/journal/bibcite/reference/3204es_ES
dc.rightsopenAccesses_ES
dc.subjecttumores_ES
dc.subjectdeep belief networkes_ES
dc.subjectlocal neighborhood structurees_ES
dc.subjectscattering transformes_ES
dc.subjecttumor characterizationes_ES
dc.subjectIJIMAIes_ES
dc.titleBrain Tumor Segmentation and Identification Using Particle Imperialist Deep Convolutional Neural Network in MRI Imageses_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttps://doi.org/10.9781/ijimai.2022.10.006


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem