Mostrar el registro sencillo del ítem

dc.contributor.authorZhang, Hongqi
dc.contributor.authorWei, Yixiong
dc.contributor.authorZhou, Hongqiao
dc.contributor.authorWu, Qianhao
dc.date2022-09
dc.date.accessioned2022-10-24T12:19:23Z
dc.date.available2022-10-24T12:19:23Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/13712
dc.description.abstractThe presence of haze will significantly reduce the quality of images, such as resulting in lower contrast and blurry details. This paper proposes a novel end-to-end dehazing method, called Encoder and Decoder Dehaze Network (ED-Dehaze Net), which contains a Generator and a Discriminator. In particular, the Generator uses an Encoder-Decoder structure to effectively extract the texture and semantic features of hazy images. Between the Encoder and Decoder we use Multi-Scale Convolution Block (MSCB) to enhance the process of feature extraction. The proposed ED-Dehaze Net is trained by combining Adversarial Loss, Perceptual Loss and Smooth L1 Loss. Quantitative and qualitative experimental results showed that our method can obtain the state-of-the-art dehazing performance.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/3160es_ES
dc.rightsopenAccesses_ES
dc.subjectimage dehazinges_ES
dc.subjectencoder and decoder networkes_ES
dc.subjectgenerative adversarial etworkes_ES
dc.subjectmulti-scale convolution blockes_ES
dc.subjectloss functiones_ES
dc.subjectIJIMAIes_ES
dc.titleED-Dehaze Net: Encoder and Decoder Dehaze Networkes_ES
dc.typearticlees_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.9781/ijimai.2022.08.008


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem