• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 4, june 2022
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 4, june 2022
    • Ver ítem

    A Novel Technique to Detect and Track Multiple Objects in Dynamic Video Surveillance Systems

    Autor: 
    Adimoolam, M.
    ;
    Mohan, Senthilkumar
    ;
    A., John
    ;
    Srivastava, Gautam
    Fecha: 
    06/2022
    Palabra clave: 
    convolutional neural network (CNN); machine learning; object detection; video surveillance; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13584
    DOI: 
    https://doi.org/10.9781/ijimai.2022.01.002
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3079
    Open Access
    Resumen:
    Video surveillance is one of the important state of the art systems to be utilized in order to monitor different areas of modern society surveillance like the general public surveillance system, city traffic monitoring system, and forest monitoring system. Hence, surveillance systems have become especially relevant in the digital era. The needs of the video surveillance systems and its video analytics have become inevitable due to an increase in crimes and unethical behavior. Thus enabling the tracking of individuals object in video surveillance is an essential part of modern society. With the advent of video surveillance, performance measures for such surveillance also need to be improved to keep up with the ever increasing crime rates. So far, many methodologies relating to video surveillance have been introduced ranging from single object detection with a single or multiple cameras to multiple object detection using single or multiple cameras. Despite this, performance benchmarks and metrics need further improvements. While mechanisms exist for single or multiple object detection and prediction on videos or images, none can meet the criteria of detection and tracking of multiple objects in static as well as dynamic environments. Thus, real-world multiple object detection and prediction systems need to be introduced that are both accurate as well as fast and can also be adopted in static and dynamic environments. This paper introduces the Densely Feature selection Convolutional neural Network – Hyper Parameter tuning (DFCNHP) and it is a hybrid protocol with faster prediction time and high accuracy levels. The proposed system has successfully tracked multiple objects from multiple channels and is a combination of dense block, feature selection, background subtraction and Bayesian methods. The results of the experiment conducted demonstrated an accuracy of 98% and 1.11 prediction time and these results have also been compared with existing methods such as Kalman Filtering (KF) and Deep Neural Network (DNN).
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_7_4_10.pdf
    Tamaño: 967.6Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 7, nº 4, june 2022

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    37
    215
    239
    170
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    21
    97
    117
    82

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Performance improvement and Lyapunov stability analysis of nonlinear systems using hybrid optimization techniques 

      Srivastava, Vishal; Srivastava, Smriti; Chaudhary, Gopal; Blanco Valencia, Xiomara Patricia (Expert Systems, 2023)
      Using Hybrid optimization algorithms for nonlinear systems analysis is a novel approach. It is a powerful technique that uses the exploitation ability of one algorithm and the exploration ability of another algorithm, to ...
    • Editor's Note 

      Chun-Wei Lin, Jerry; Srivastava, Gautam; Tseng, Vicent S. (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2021)
      In today’s world, we have witnessed an onset of multimedia content being uploaded/downloaded and shared through a multitude of platforms both online and offline. In support of this trend, multimedia processing and analyzing ...
    • Voltage Regulation using Probabilistic and Fuzzy Controlled Dynamic Voltage Restorer for Oil and Gas Industry 

      Gupta, Monika; Srivastava, Smriti; Chaudhary, Gopal; Khari, Manju; Parra Fuente, Javier (World Scientific, 2020)
      In a power distribution system, faults occurring can cause voltage sag that can affect critical loads connected in the power network which can cause serious effects in the oil and gas industry. The objective of this paper ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja