• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 4, june 2022
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 4, june 2022
    • Ver ítem

    MDFRCNN: Malware Detection using Faster Region Proposals Convolution Neural Network

    Autor: 
    Deore, Mahendra
    ;
    Kulkarni, Uday
    Fecha: 
    06/2022
    Palabra clave: 
    malware; convolutional neural network (CNN); faster RCNN (F-RCNN); classification; malware static; dynamic analysis; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13566
    DOI: 
    https://doi.org/10.9781/ijimai.2021.09.005
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3021
    Open Access
    Resumen:
    Technological advancement of smart devices has opened up a new trend: Internet of Everything (IoE), where all devices are connected to the web. Large scale networking benefits the community by increasing connectivity and giving control of physical devices. On the other hand, there exists an increased ‘Threat’ of an ‘Attack’. Attackers are targeting these devices, as it may provide an easier ‘backdoor entry to the users’ network’.MALicious softWARE (MalWare) is a major threat to user security. Fast and accurate detection of malware attacks are the sine qua non of IoE, where large scale networking is involved. The paper proposes use of a visualization technique where the disassembled malware code is converted into gray images, as well as use of Image Similarity based Statistical Parameters (ISSP) such as Normalized Cross correlation (NCC), Average difference (AD), Maximum difference (MaxD), Singular Structural Similarity Index Module (SSIM), Laplacian Mean Square Error (LMSE), MSE and PSNR. A vector consisting of gray image with statistical parameters is trained using a Faster Region proposals Convolution Neural Network (F-RCNN) classifier. The experiment results are promising as the proposed method includes ISSP with F-RCNN training. Overall training time of learning the semantics of higher-level malicious behaviors is less. Identification of malware (testing phase) is also performed in less time. The fusion of image and statistical parameter enhances system performance with greater accuracy. The benchmark database from Microsoft Malware Classification challenge has been used to analyze system performance, which is available on the Kaggle website. An overall average classification accuracy of 98.12% is achieved by the proposed method.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_7_4_13.pdf
    Tamaño: 2.083Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 7, nº 4, june 2022

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    35
    147
    168
    64
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    60
    110
    98
    42

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja