• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 3, march 2022
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2022
    • vol. 7, nº 3, march 2022
    • Ver ítem

    Research Collaboration Influence Analysis Using Dynamic Co-authorship and Citation Networks

    Autor: 
    Razzaq, Sidra
    ;
    Kamran Malik, Ahmad
    ;
    Raza, Basit
    ;
    Ali Khattak, Hasan
    ;
    Moscoso Zegarra, Giomar W.
    ;
    Díaz Zelada, Yvan
    Fecha: 
    03/2022
    Palabra clave: 
    collaborative research analysis; influence analysis; network centrality; quality of reseach; statistical analysis; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13151
    DOI: 
    https://doi.org/10.9781/ijimai.2022.03.001
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3115
    Open Access
    Resumen:
    Collaborative research is increasing in terms of publications, skills, and formal interactions, which certainly makes it the hotspot in both academia and the industrial sector. Knowing the factors and behavior of dynamic collaboration network provides insights that helps in improving the researcher’s profile and coordinator’s productivity of research. Despite rapid developments in the research collaboration process with various outcomes, its validity is still difficult to address. Existing approaches have used bibliometric network analysis with different aspects to understand collaboration patterns that measure the quality of their corresponding relationships. At this point in time, we would like to investigate an efficient method to outline the credibility of findings in publication—author relations. In this research, we propose a new collaboration method to analyze the structure of research articles using four types of graphs for discerning authors’ influence. We apply different combinations of network relationships and bibliometric analysis on the G-index parameter to disclose their interrelated differences. Our model is designed to find the dynamic indicators of co-authored collaboration with an influence on the author’s behavior in terms of change in research area/interest. In the research we investigate the dynamic relations in an academic field using metadata of openly available articles and collaborating international authors in interrelated areas/domains. Based on filtered evidence of relationship networks and their statistical results, the research shows an increment in productivity and better influence over time.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai7_3_10_0.pdf
    Tamaño: 1.828Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS
    • vol. 7, nº 3, march 2022

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    112
    137
    185
    87
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    57
    77
    31
    13

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Automated Detection of COVID-19 using Chest X-Ray Images and CT Scans through Multilayer-Spatial Convolutional Neural Networks 

      Khattak, Muhammad Irfan; Al-Hasan, Mu'ath; Jan, Atif; Saleem, Nasir; Verdú, Elena ; Khurshid, Numan (International Journal of Interactive Multimedia and Artificial Intelligence, 2021)
      The novel coronavirus-2019 (Covid-19), a contagious disease became a pandemic and has caused overwhelming effects on the human lives and world economy. The detection of the contagious disease is vital to avert further ...
    • Automated Detection of COVID-19 using Chest X-Ray Images and CT Scans through Multilayer- Spatial Convolutional Neural Networks 

      Khattak, Muhammad Irfan; Al-Hasan, Mu’ath; Jan, Atif; Saleem, Nasir; Verdú, Elena; Khurshid, Numan (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2021)
      The novel coronavirus-2019 (Covid-19), a contagious disease became a pandemic and has caused overwhelming effects on the human lives and world economy. The detection of the contagious disease is vital to avert further ...
    • mlCAF: Multi-Level Cross-Domain Semantic Context Fusioning for Behavior Identification 

      Asif Razzaq, Muhammad; Villalonga, Claudia ; Sungyoung, Lee; Akhtar, Usman; Ali, Maqbool; Kim, Eun-Soo; Masood Khattak, Asad; Seung, Hyonwoo; Hur, Taeho; Bang, Jaehun; Kim, Dohyeong; Ali Khan, Wajahat (Sensors, 10/2017)
      The emerging research on automatic identification of user’s contexts from the cross-domain environment in ubiquitous and pervasive computing systems has proved to be successful. Monitoring the diversified user’s contexts ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja