Mostrar el registro sencillo del ítem

dc.contributor.authorVerma, Kamal Kant
dc.contributor.authorSingh, Brij Mohan
dc.date2021-12
dc.date.accessioned2022-05-09T11:48:54Z
dc.date.available2022-05-09T11:48:54Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/13048
dc.description.abstractMachine recognition of the human activities is an active research area in computer vision. In previous study, either one or two types of modalities have been used to handle this task. However, the grouping of maximum information improves the recognition accuracy of human activities. Therefore, this paper proposes an automatic human activity recognition system through deep fusion of multi-streams along with decision-level score optimization using evolutionary algorithms on RGB, depth maps and 3d skeleton joint information. Our proposed approach works in three phases, 1) space-time activity learning using two 3D Convolutional Neural Network (3DCNN) and a Long Sort Term Memory (LSTM) network from RGB, Depth and skeleton joint positions 2) Training of SVM using the activities learned from previous phase for each model and score generation using trained SVM 3) Score fusion and optimization using two Evolutionary algorithm such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO) algorithm. The proposed approach is validated on two 3D challenging datasets, MSRDailyActivity3D and UTKinectAction3D. Experiments on these two datasets achieved 85.94% and 96.5% accuracies, respectively. The experimental results show the usefulness of the proposed representation. Furthermore, the fusion of different modalities improves recognition accuracies rather than using one or two types of information and obtains the state-of-art results.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 7, nº 2
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/2994es_ES
dc.rightsopenAccesses_ES
dc.subjecthuman activityes_ES
dc.subjectactivity recognitiones_ES
dc.subjecthuman detection activityes_ES
dc.subjectsupport vector machinees_ES
dc.subjectconvolutional neural network (CNN)es_ES
dc.subject3D-convolutional neural networkes_ES
dc.subjectlong short term memoryes_ES
dc.subjectdeep learninges_ES
dc.subjectgenetic algorithmses_ES
dc.subjectparticle swarm optimizationes_ES
dc.subjectIJIMAIes_ES
dc.titleDeep Multi-Model Fusion for Human Activity Recognition Using Evolutionary Algorithmses_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttps://doi.org/10.9781/ijimai.2021.08.008


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem