• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 2, june 2020
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 2, june 2020
    • Ver ítem

    Two-Stage Human Activity Recognition Using 2D-ConvNet

    Autor: 
    Verma, Kamal Kant
    ;
    Singh, Brij Mohan
    ;
    Mandoria, H L
    ;
    Chauhan, Prachi
    Fecha: 
    06/2020
    Palabra clave: 
    activity recognition; monitoring; random forest; convolutional neural network (CNN); IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12733
    DOI: 
    https://doi.org/10.9781/ijimai.2020.04.002
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2762
    Open Access
    Resumen:
    There is huge requirement of continuous intelligent monitoring system for human activity recognition in various domains like public places, automated teller machines or healthcare sector. Increasing demand of automatic recognition of human activity in these sectors and need to reduce the cost involved in manual surveillance have motivated the research community towards deep learning techniques so that a smart monitoring system for recognition of human activities can be designed and developed. Because of low cost, high resolution and ease of availability of surveillance cameras, the authors developed a new two-stage intelligent framework for detection and recognition of human activity types inside the premises. This paper, introduces a novel framework to recognize single-limb and multi-limb human activities using a Convolution Neural Network. In the first phase single-limb and multi-limb activities are separated. Next, these separated single and multi-limb activities have been recognized using sequence-classification. For training and validation of our framework we have used the UTKinect-Action Dataset having 199 actions sequences performed by 10 users. We have achieved an overall accuracy of 97.88% in real-time recognition of the activity sequences.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_6_2_13.pdf
    Tamaño: 1.188Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 2, june 2020

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    108
    136
    75
    42
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    209
    126
    170
    19

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Deep Multi-Model Fusion for Human Activity Recognition Using Evolutionary Algorithms 

      Verma, Kamal Kant; Singh, Brij Mohan (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2021)
      Machine recognition of the human activities is an active research area in computer vision. In previous study, either one or two types of modalities have been used to handle this task. However, the grouping of maximum ...
    • A Comparative Analysis of Machine Learning Models for Banking News Extraction by Multiclass Classification With Imbalanced Datasets of Financial News: Challenges and Solutions 

      Dogra, Varun; Verma, Sahil; Verma, Kavita; Jhanjhi, NZ; Ghosh, Uttam; Le, Dac-Nhuong (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2022)
      Online portals provide an enormous amount of news articles every day. Over the years, numerous studies have concluded that news events have a significant impact on forecasting and interpreting the movement of stock prices. ...
    • Predictive text analysis using eye blinks 

      Chaudhary, Gopal; Lamba, Puneet Singh; Jolly, Harman Singh; Poply, Sakaar; Khari, Manju; Verdú, Elena (Elsevier Ltd, 2021)
      The current work aims to facilitate interaction with others to those with the inability to perform activities requiring motor skills or those who cannot speak. It proposes a modus operandi or a system based on Histogram ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja