Mostrar el registro sencillo del ítem

dc.contributor.authorGupta, Akansha
dc.contributor.authorGhanshala, Kamal
dc.contributor.authorJoshi, R. C.
dc.date2021-06
dc.date.accessioned2022-04-29T08:27:49Z
dc.date.available2022-04-29T08:27:49Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/12978
dc.description.abstractThis article offers a thorough analysis of the machine learning classifiers approaches for the collected Received Signal Strength Indicator (RSSI) samples which can be applied in predicting propagation loss, used for network planning to achieve maximum coverage. We estimated the RMSE of a machine learning classifier on multivariate RSSI data collected from the cluster of 6 Base Transceiver Stations (BTS) across a hilly terrain of Uttarakhand-India. Variable attributes comprise topology, environment, and forest canopy. Four machine learning classifiers have been investigated to identify the classifier with the least RMSE: Gaussian Process, Ensemble Boosted Tree, SVM, and Linear Regression. Gaussian Process showed the lowest RMSE, R- Squared, MSE, and MAE of 1.96, 0.98, 3.8774, and 1.3202 respectively as compared to other classifiers.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 6, nº 6
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/2923es_ES
dc.rightsopenAccesses_ES
dc.subjectpropagation losses_ES
dc.subjectreceived signal strength indicator (RSSI)es_ES
dc.subjectradioes_ES
dc.subjectmachine learninges_ES
dc.subjectclassificationes_ES
dc.subjectsupport vector machinees_ES
dc.subject5Ges_ES
dc.subjectIJIMAIes_ES
dc.titleMachine Learning Classifier Approach with Gaussian Process, Ensemble boosted Trees, SVM, and Linear Regression for 5G Signal Coverage Mappinges_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttps://doi.org/10.9781/ijimai.2021.03.004


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem