






Regular Issue

- 159 -

A. Dataset
42,500 RSSI samples of field measurement dataset are utilized for 

applying the machine learning approach on signal coverage prediction.

Fig. 4 shows the architecture of 3D channel modeling and the 
complete procedure of real-time data collection.

Fig. 4. Illustration of 3D Channel Modeling Architecture.

TABLE I. Features of Wireless Network

Features Value

Coverage Objective RSRP (dBm) -106.6

Cluster Sectors I-UW-GGLT-ENB-9004-0 (A)

Coverage Overshooting Radius (m) 4095

Band 850,2300,1800

Antenna Longitude 10

Antenna Latitude 50

Antenna Height (m) 37

Antenna Azimuth 10

Antenna Tilt Electrical 8

Antenna Tilt Mechanical 3

Table I illustrates features of wireless network which affect network 
planning and required for optimum signal coverage. The received 
signal is a combination of signals coming from different directions due 
to reflection, diffraction, and scattering.

RSSI signal strength is measured 360 degrees around each BTS in 3 
sectors alpha, beta, and gamma to analyze the maximum coverage of 
signal within a cell. The coverage threshold values of the network in 3 
sectors are summarizes in Table II. 

TABLE II. Coverage Objective Threshold Value in Alpha, Beta, Gamma 
Sectors

Coverage Objective Threshold Sector Alpha, Beta, 
Gamma

Coverage Objective RSRP (dBm) -106.6

Coverage Objective Percentile (%) 80

Coverage Overshooting Radius (m) 4095

Coverage Overshooting RSRP (dBm) -91.6

Coverage Overshooting Percentile (%) 10

Coverage Swap Percentile (%) 50

Coverage SideLobe Percentile (%) 30

Coverage Radius Inner Percentile (%) 10

V. Experimental Results and Discussions

In this section, the performance of Machine learning classifiers 
is evaluated using data collected from the experimental setup. The 
validation scheme has been chosen before tuning to estimate the 
performance of the model on new data. Validation also helps to 
examine the predictive accuracy of the fitted models and avoids over 
fitting. 3 types of validation schemes were available: 

a) Cross-Validation is used for small data sets and uses a full portion 
of the data set.

b) Hold out Validation is used for large data sets and uses some 
portion of the data set.

c) No Validation signifies no protection against overfitting. 

5 fold cross-validation was used to divide the original data set into 5 
disjoint sets as by using 5 fold cross-validation, the predictive accuracy of 
trained models was well estimated on the entire data set where each fold: 

a) Trains a model 

b) Evaluate the performance of model 

c) Calculates average test error

A. Predicted Vs Response Plot
The Predicted Vs Response plot analyzed the performance of 

classifiers by evaluating the efficiency of the regression model by 
investigating the prediction for varying response values. The predicted 
response of models was laid against the true response. An efficient 
regression model had a predicted response nearly identical to the true 
response, therefore response values lay close to the diagonal line. The 
perpendicular separation between the diagonal line to each point was 
the deviation of the prediction for the point under consideration. An 
efficient classifier has minimum errors and points distributed roughly 
identical about the diagonal line.
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Fig. 5. Predicted Vs True response of Ensemble Boosted Tree.

Fig. 5 depicted RMSE value for Ensemble was 4.692 with R Squared 
value of 0.89. MSE was 22.015, MAE 3.88209, prediction speed 1800 
obs/Sec, and training time of 32.441 Sec.

RMSE for Support Vector Machine was 3.9823 with R Squared value 
of 0.92, MSE 15.858, MAE 3.1148, prediction speed 11000 obs/Sec, and 
training time of 38.888Sec as shown in Fig. 6.

RMSE value for Linear Regression was 4.2946 with R Squared value 
of 0.91, MSE 18.444, MAE 3.5477, prediction speed 4000 obs/Sec, and 
training time of 25.623 Sec as shown in Fig. 7.

Fig. 8 shows RMSE value for Gaussian Process was 1.9691 with R 
Squared value of 0.98, MSE 3.8774, MAE 1.3202, prediction speed 8600 
obs/Sec, and training time of 38.888 Sec.
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Fig. 6. Predicted Vs True response of Support Vector Machine.
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Fig. 7. Predicted Vs True response of Linear Regression.
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Fig. 8. Predicted Vs True response of Gaussian Process.

B. Comparison of Residual Plot Outlier
The residuals plot from Fig.9 to Fig. 12 displayed the deviation 

between the predicted and true responses. The predicted response 
variable was chosen among true response, predicted response, record 
number, or one of the predictors to plot on the x-axis. The efficient 
model had residuals distributed roughly symmetrically around 0. Fig.10 
showed that the residual plot of Gaussian Process scattered roughly 
symmetrically around 0 and also clear patterns in the residuals are 
observed.
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Fig. 9. Residual plot of Ensemble.
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Fig. 10. Residual plot of Linear Regression.
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Fig. 11. Residual plot of Gaussian Process.



Regular Issue

- 161 -

-5

0

5

10

-10

-95 -80 -75-85-90 -70 -65

Predicted response

R
es

id
ua

ls
 (A

N
FI

S)

-60 -55 -50 -45

Fig. 12. Residual plot of SVM.

C. Comparison of Response Plot Outlier
A regression model result was viewed in the response plot 

that displayed the prediction response against the record number. 
Predication error was displayed as vertical lines between predicted 
and new responses.
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Fig. 13. Response plot of Gaussian Process.

Gaussian Process model performance was also evaluated using the 
residual plot after the model was trained. The difference between true 
and predicted response was displayed by a residual plot in Fig. 13. A 
variable predicted response had been plotted on the x-axis. For a good 
model, residuals had been scattered approximated identical around 0 
and it changed considerably in size from left to right.

VI. Conclusion and Observation

The performance evaluation of machine learning algorithms on 
training data is tabulated in Table III.

We observed that the lowest value of RMSE was obtained from 
the Gaussian Process classifier, depicting the probability to correctly 
predict the propagation loss, while the highest value of RMSE (4.692%) 
was observed with the Ensemble boosted tree. However, SVM and 
linear regression classifiers hold intermediate values of RMSE 3.9823%, 
and 4.2946%, respectively. The lowest value of RMSE (1.9691%) was 
estimated by the Gaussian Process classifier. MSE and MAE for 
Gaussian Process are also a minimum of 3.8774 and 1.3202. Response 
plot Outlier curves for the proposed Gaussian Process classifier and 
other state-of-the-art algorithms are shown in Fig. 13 where residuals 
have been scattered approximately identical around 0. It is analyzed 

that the Empirical signal coverage models which are univariate cannot 
predict signal coverage by using only one network parameter for 
coverage prediction, however machine learning-based signal coverage 
prediction model is multivariate and it could be designed on field RSSI 
measurement by considering two or more network parameters, hence 
predict signal coverage more accurately. Signal coverage prediction 
using the machine learning model requires training of best-fit 
machine learning classifier by hit and trial method and shortlisting 
machine learning classifiers with minimum RMSE error on RSSI field 
dataset. To validate it practically, the classifier-based signal mapping 
approach was applied to a real-time wireless network at the fringe 
area of Uttarakhand-India. However, the results of this application 
could encourage practitioners and researchers to validate further 
the practicality of the approach for similar real fringe area wireless 
networks.

TABLE III. Performance Evaluation of Machine Learning Algorithms 
on Training Data

Coverage Objective 
Threshold

Gaussian 
Process

Ensemble 
Boosted Trees

SVM Linear 
Regression

 RMSE 1.9691 4.692 3.9823 4.2946

R Squared 0.98 .89 0.92 0.91

 MSE 3.8774 22.015 15.858 18.444

MAE 1.3202 3.8209 3.1148 3.5477

Prediction Speed 
(obs/Sec)

8600 1800 11000 4000

Training Time (Sec) 38.888 32.441 26.495 25.623
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