• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 6, nº 6, june 2021
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 6, nº 6, june 2021
    • Ver ítem

    Optimal Parameter Estimation of Solar PV Panel Based on Hybrid Particle Swarm and Grey Wolf Optimization Algorithms

    Autor: 
    Rezk, Hegazy
    ;
    Arfaoui, Jouda
    ;
    Gomaa, Mohamed R.
    Fecha: 
    06/2021
    Palabra clave: 
    optimization; parameter estimation; renewable energies; energy; diode model; IJIMAI
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12963
    DOI: 
    https://doi.org/10.9781/ijimai.2020.12.001
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2863
    Open Access
    Resumen:
    The performance of a solar photovoltaic (PV) panel is examined through determining its internal parameters based on single and double diode models. The environmental conditions such as temperature and the level of radiation also influence the output characteristics of solar panel. In this research work, the parameters of solar PV panel are identified for the first time, as far as the authors know, using hybrid particle swarm optimization (PSO) and grey wolf optimizer (WGO) based on experimental datasets of I-V curves. The main advantage of hybrid PSOGWO is combining the exploitation ability of the PSO with the exploration ability of the GWO. During the optimization process, the main target is minimizing the root mean square error (RMSE) between the original experimental data and the estimated data. Three different solar PV modules are considered to prove the superiority of the proposed strategy. Three different solar PV panels are used during the evaluation of the proposed strategy. A comparison of PSOGWO with other state-of-the-art methods is made. The obtained results confirmed that the least RMSE values are achieved using PSOGWO for all case studies compared with PSO and GWO optimizers. Almost a perfect agreement between the estimated data and experimental data set is achieved by PSOGWO.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_6_6_15.pdf
    Tamaño: 1.519Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 6, june 2021

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    32
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    13

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Statistical Comparisons of the Top 10 Algorithms in Data Mining for Classification Task 

      Settouti, Nesma; El Amine Bechar, Mohammed; Amine Chikh, Mohammed (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2016)
      This work is builds on the study of the 10 top data mining algorithms identified by the IEEE International Conference on Data Mining (ICDM) community in December 2006. We address the same study, but with the application ...
    • Multilayer Perceptron: Architecture Optimization and Training 

      Ramchoun, Hassan; Ghanou, Youssef; Ettaouil, Mohamed; Janati Idrissi, Mohammed Amine (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2016)
      The multilayer perceptron has a large wide of classification and regression applications in many fields: pattern recognition, voice and classification problems. But the architecture choice has a great impact on the convergence ...
    • MSA for Optimal Reconfiguration and Capacitor Allocation in Radial/Ring Distribution Networks 

      Mohamed, Emad; Mohamed, Al-Attar Ali; Mitani, Yasunori (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2018)
      This work presents a hybrid heuristic search algorithm called Moth Swarm Algorithm (MSA) in the context of power loss minimization of radial distribution networks (RDN) through optimal allocation and rating of shunt ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja