• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 6, nº 6, june 2021
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 6, nº 6, june 2021
    • Ver ítem

    An Empiric Analysis of Wavelet-Based Feature Extraction on Deep Learning and Machine Learning Algorithms for Arrhythmia Classification

    Autor: 
    Singh, Ritu
    ;
    Rajpal, Navin
    ;
    Mehta, Rajesh
    Fecha: 
    06/2021
    Palabra clave: 
    ECG arrhythmia; long short term memory; support vector machine; wavelet; IJIMAI
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12961
    DOI: 
    https://doi.org/10.9781/ijimai.2020.11.005
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2836
    Open Access
    Resumen:
    The aberration in human electrocardiogram (ECG) affects cardiovascular events that may lead to arrhythmias. Many automation systems for ECG classification exist, but the ambiguity to wisely employ the in-built feature extraction or expert based manual feature extraction before classification still needs recognition. The proposed work compares and presents the enactment of using machine learning and deep learning classification on time series sequences. The two classifiers, namely the Support Vector Machine (SVM) and the Bi-directional Long Short-Term Memory (BiLSTM) network, are separately trained by direct ECG samples and extracted feature vectors using multiresolution analysis of Maximal Overlap Discrete Wavelet Transform (MODWT). Single beat segmentation with R-peaks and QRS detection is also involved with 6 morphological and 12 statistical feature extraction. The two benchmark datasets, multi-class, and binary class, are acquired from the PhysioNet database. For the binary dataset, BiLSTM with direct samples and with feature extraction gives 58.1% and 80.7% testing accuracy, respectively, whereas SVM outperforms with 99.88% accuracy. For the multi-class dataset, BiLSTM classification accuracy with the direct sample and the extracted feature is 49.6% and 95.4%, whereas SVM shows 99.44%. The efficient statistical workout depicts that the extracted feature-based selection of data can deliver distinguished outcomes compared with raw ECG data or in-built automatic feature extraction. The machine learning classifiers like SVM with knowledge-based feature extraction can equally or better perform than Bi-LSTM network for certain datasets.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_6_6_3.pdf
    Tamaño: 1.576Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 6, june 2021

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    18
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    15

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Predictive text analysis using eye blinks 

      Chaudhary, Gopal; Lamba, Puneet Singh; Jolly, Harman Singh; Poply, Sakaar; Khari, Manju; Verdú, Elena (1) (Elsevier Ltd, 2021)
      The current work aims to facilitate interaction with others to those with the inability to perform activities requiring motor skills or those who cannot speak. It proposes a modus operandi or a system based on Histogram ...
    • A Useful Metaheuristic for Dynamic Channel Assignment in Mobile Cellular Systems 

      Kumar Singh, Deepak; Srinivas, K.; Bhagwan Das, D. (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2012)
      The prime objective of a Channel Assignment Problem (CAP) is to assign appropriate number of required channels to each cell in a way to achieve both efficient frequency spectrum utilization and minimization of interference ...
    • Infected Fruit Part Detection using K-Means Clustering Segmentation Technique 

      Dubey, Shiv Ram; Dixit, Pushkar; Singh, Nishant; Gupta, Jay Prakash (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2013)
      Nowadays, overseas commerce has increased drastically in many countries. Plenty fruits are imported from the other nations such as oranges, apples etc. Manual identification of defected fruit is very time consuming. This ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja