• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2013
    • vol. 2, nº 2, june 2013
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2013
    • vol. 2, nº 2, june 2013
    • Ver ítem

    Infected Fruit Part Detection using K-Means Clustering Segmentation Technique

    Autor: 
    Dubey, Shiv Ram
    ;
    Dixit, Pushkar
    ;
    Singh, Nishant
    ;
    Gupta, Jay Prakash
    Fecha: 
    06/2013
    Palabra clave: 
    K-Means; defect segmentation; fruit images; image processing; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/9723
    DOI: 
    http://dx.doi.org/10.9781/ijimai.2013.229
    Dirección web: 
    https://www.ijimai.org/journal/node/468
    Open Access
    Resumen:
    Nowadays, overseas commerce has increased drastically in many countries. Plenty fruits are imported from the other nations such as oranges, apples etc. Manual identification of defected fruit is very time consuming. This work presents a novel defect segmentation of fruits based on color features with K-means clustering unsupervised algorithm. We used color images of fruits for defect segmentation. Defect segmentation is carried out into two stages. At first, the pixels are clustered based on their color and spatial features, where the clustering process is accomplished. Then the clustered blocks are merged to a specific number of regions. Using this two step procedure, it is possible to increase the computational efficiency avoiding feature extraction for every pixel in the image of fruits. Although the color is not commonly used for defect segmentation, it produces a high discriminative power for different regions of image. This approach thus provides a feasible robust solution for defect segmentation of fruits. We have taken apple as a case study and evaluated the proposed approach using defected apples. The experimental results clarify the effectiveness of proposed approach to improve the defect segmentation quality in aspects of precision and computational time. The simulation results reveal that the proposed approach is promising.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai20132_2_9_pdf_10021.pdf
    Tamaño: 1.198Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 2, nº 2, june 2013

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    222
    297
    291
    250
    673
    120
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    163
    175
    210
    131
    150
    68

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Robust Lossless Semi Fragile Information Protection in Images 

      Dixit, Pushkar; Singh, Nishant; Prakash Gupta, Jay (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2014)
      Internet security finds it difficult to keep the information secure and to maintain the integrity of the data. Sending messages over the internet secretly is one of the major tasks as it is widely used for passing the ...
    • Analysis of Gait Pattern to Recognize the Human Activities 

      Prakash Gupta, Jay; Dixit, Pushkar; Singh, Nishant; Bhaskar Aemwal, Vijay (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2014)
      Human activity recognition based on the computer vision is the process of labelling image sequences with action labels. Accurate systems for this problem are applied in areas such as visual surveillance, human computer ...
    • Modeling Sub-Band Information Through Discrete Wavelet Transform to Improve Intelligibility Assessment of Dysarthric Speech 

      Sahu, Laxmi Priya; Pradhan, Gayadhar; Singh, Jyoti Prakash (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2022)
      The speech signal within a sub-band varies at a fine level depending on the type, and level of dysarthria. The Mel-frequency filterbank used in the computation process of cepstral coefficients smoothed out this fine level ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja