• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 6, nº 6, june 2021
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 6, nº 6, june 2021
    • Ver ítem

    Attention-based Multi-modal Sentiment Analysis and Emotion Detection in Conversation using RNN

    Autor: 
    Huddar, Mahesh G.
    ;
    Sannakki, Sanjeev S.
    ;
    Rajpurohit, Vijay S.
    Fecha: 
    06/2021
    Palabra clave: 
    attention model; interlocutor state; context awareness; emotion recognition; multimodal; sentiment analysis; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12956
    DOI: 
    https://doi.org/10.9781/ijimai.2020.07.004
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2800
    Open Access
    Resumen:
    The availability of an enormous quantity of multimodal data and its widespread applications, automatic sentiment analysis and emotion classification in the conversation has become an interesting research topic among the research community. The interlocutor state, context state between the neighboring utterances and multimodal fusion play an important role in multimodal sentiment analysis and emotion detection in conversation. In this article, the recurrent neural network (RNN) based method is developed to capture the interlocutor state and contextual state between the utterances. The pair-wise attention mechanism is used to understand the relationship between the modalities and their importance before fusion. First, two-two combinations of modalities are fused at a time and finally, all the modalities are fused to form the trimodal representation feature vector. The experiments are conducted on three standard datasets such as IEMOCAP, CMU-MOSEI, and CMU-MOSI. The proposed model is evaluated using two metrics such as accuracy and F1-Score and the results demonstrate that the proposed model performs better than the standard baselines.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_6_6_12.pdf
    Tamaño: 1.450Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 6, june 2021

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    239
    412
    2321
    255
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    141
    215
    343
    192

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • A Fault-Tolerant Mobile Computing Model Based On Scalable Replica 

      Sati, Meenakshi; Vikash, Vivek; Bijalwan, Vishwanath; Kumari, Pinki; Raj, Manish; Balodhi, Meenu; Gairola, Priya; Bhaskar Semwal, Vijay (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2014)
      The most frequent challenge faced by mobile user is stay connected with online data, while disconnected or poorly connected store the replica of critical data. Nomadic users require replication to store copies of critical ...
    • Accurate location estimation of moving object In Wireless Sensor network 

      Bhaskar Semwal, Vijay; Bhaskar Semwal, Vinay; Sati, Meenakshi; Verma, Dr.Shirshu (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2011)
      One of the central issues in wirless sensor networks is track the location, of moving object which have overhead of saving data, an accurate estimation of the target location of object with energy constraint .We do not ...
    • Analysis of Gait Pattern to Recognize the Human Activities 

      Prakash Gupta, Jay; Dixit, Pushkar; Singh, Nishant; Bhaskar Aemwal, Vijay (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2014)
      Human activity recognition based on the computer vision is the process of labelling image sequences with action labels. Accurate systems for this problem are applied in areas such as visual surveillance, human computer ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja