Mostrar el registro sencillo del ítem

dc.contributor.authorHuddar, Mahesh G.
dc.contributor.authorSannakki, Sanjeev S.
dc.contributor.authorRajpurohit, Vijay S.
dc.date2021-06
dc.date.accessioned2022-04-28T07:20:14Z
dc.date.available2022-04-28T07:20:14Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/12956
dc.description.abstractThe availability of an enormous quantity of multimodal data and its widespread applications, automatic sentiment analysis and emotion classification in the conversation has become an interesting research topic among the research community. The interlocutor state, context state between the neighboring utterances and multimodal fusion play an important role in multimodal sentiment analysis and emotion detection in conversation. In this article, the recurrent neural network (RNN) based method is developed to capture the interlocutor state and contextual state between the utterances. The pair-wise attention mechanism is used to understand the relationship between the modalities and their importance before fusion. First, two-two combinations of modalities are fused at a time and finally, all the modalities are fused to form the trimodal representation feature vector. The experiments are conducted on three standard datasets such as IEMOCAP, CMU-MOSEI, and CMU-MOSI. The proposed model is evaluated using two metrics such as accuracy and F1-Score and the results demonstrate that the proposed model performs better than the standard baselines.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 6, nº 6
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/2800es_ES
dc.rightsopenAccesses_ES
dc.subjectattention modeles_ES
dc.subjectinterlocutor statees_ES
dc.subjectcontext awarenesses_ES
dc.subjectemotion recognitiones_ES
dc.subjectmultimodales_ES
dc.subjectsentiment analysises_ES
dc.subjectIJIMAIes_ES
dc.titleAttention-based Multi-modal Sentiment Analysis and Emotion Detection in Conversation using RNNes_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttps://doi.org/10.9781/ijimai.2020.07.004


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem