• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 6, nº 5, march 2021
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 6, nº 5, march 2021
    • Ver ítem

    Antimicrobial Resistance Prediction in Intensive Care Unit for Pseudomonas Aeruginosa using Temporal Data-Driven Models

    Autor: 
    Hernàndez-Carnerero, Àlvar
    ;
    Sànchez-Marrè, Miquel
    ;
    Mora-Jiménez, Inmaculada
    ;
    Soguero-Ruiz, Cristina
    ;
    Martínez-Agüero, Sergio
    ;
    Álvarez-Rodríguez, Joaquín
    Fecha: 
    03/2021
    Palabra clave: 
    antimicrobial resistance; intensive care unit; prediction; pseudomonas aeruginosa; temporal data-driven modeling; IJIMAI
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12918
    DOI: 
    https://doi.org/10.9781/ijimai.2021.02.012
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2908
    Open Access
    Resumen:
    One threatening medical problem for human beings is the increasing antimicrobial resistance of some microorganisms. This problem is especially difficult in Intensive Care Units (ICUs) of hospitals due to the vulnerable state of patients. Knowing in advance whether a concrete bacterium is resistant or susceptible to an antibiotic is a crux step for clinicians to determine an effective antibiotic treatment. This usual clinical procedure takes approximately 48 hours and it is named antibiogram. It tests the bacterium resistance to one or more antimicrobial families (six of them considered in this work). This article focuses on cultures of the Pseudomonas Aeruginosa bacterium because is one of the most dangerous in the ICU. Several temporal data-driven models are proposed and analyzed to predict the resistance or susceptibility to a determined antibiotic family previously to know the antibiogram result and only using the available past information from a data set. This data set is formed by anonymized electronic health records data from more than 3300 ICU patients during 15 years. Several data-driven classifier methods are used in combination with several temporal modeling approaches. The results show that our predictions are reasonably accurate for some antimicrobial families, and could be used by clinicians to determine the best antibiotic therapy in advance. This early prediction can save valuable time to start the adequate treatment for an ICU patient. This study corroborates the results of a previous work pointing that the antimicrobial resistance of bacteria in the ICU is related to other recent resistance tests of ICU patients. This information is very valuable for making accurate antimicrobial resistance predictions.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_6_5_12_0.pdf
    Tamaño: 1.685Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 5, march 2021

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    19
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    5

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Editor's Note 

      Alonso-Betanzos, Amparo; Cabalar, Pedro; Dimuro, Gracaliz P.; García, Marcos; Hernández-Orallo, José; Hervás, Raquel; Manjarés, Ángeles; Martínez-Plumed, Fernado; Mora-Jiménez, Inmaculada; Sànchez-Marrè, Miquel (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2021)
      Artificial Intelligence has become nowadays one of the main relevant technologies that is driven us to a new revolution, a change in society, just as well as other human inventions, such as navigation, steam machines, or ...
    • Creatividad e inteligencia: ¿dos hermanas gemelas inseparables? 

      Jiménez, Juan E; Artiles, Ceferino; Rodríguez, Cristina; García, Eduardo; Camacho, Juan; Moraes, Julia (Revista Española de Pedagogía, 31/05/2008)
      El trabajo que aquí se presenta se ha realizado en el contexto del Programa para la atención al alumnado con altas capacidades intelectuales de Canarias. El principal objetivo de la investigación ha sido estudiar la relación ...
    • Perfil epidemiológico de los pacientes con emponzoñamiento por ofidios en el Hospital José María Velasco Ibarra, Ecuador 

      Morales Carrasco, Alex Patricio (1); Morales Carrasco, Ángel; Iñiguez Jiménez, Samuel; Durazno Ortiz, Alex; Monar Mora, Rosa; Sánchez Alvarado, Silvia; Ramos Cevallos, José; Rodríguez Vásquez, Ana; Castañeda Morales, Duban; Jerez Cunalata, Erik; Llerena Vargas, Henry (Venezuelan Society of Pharmacology and Clinical and Therapeutic Pharmacology, 2021)
      Introducción: El ofidismo es una entidad clínica frecuente en el Ecuador, por ello el objetivo de este estudio fue evaluar perfil epidemiológico de los pacientes con emponzoñamiento por ofidios en el Hospital José María ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja