• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 4, december 2020
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 4, december 2020
    • Ver ítem

    Assessed by Machines: Development of a TAM-Based Tool to Measure AI-based Assessment Acceptance Among Students

    Autor: 
    Sánchez-Prieto, José Carlos
    ;
    Cruz-Benito, Juan
    ;
    Therón, Roberto
    ;
    García-Peñalvo, Francisco
    Fecha: 
    12/2020
    Palabra clave: 
    artificial intelligence; e-assessment; adoption; IJIMAI
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12835
    DOI: 
    https://doi.org/10.9781/ijimai.2020.11.009
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2847
    Open Access
    Resumen:
    In recent years, the use of more and more technology in education has been a trend. The shift of traditional learning procedures into more online and tech-ish approaches has contributed to a context that can favor integrating Artificial-Intelligence-based or algorithm-based assessment of learning. Even more, with the current acceleration because of the COVID-19 pandemic, more and more learning processes are becoming online and are incorporating technologies related to automatize assessment or help instructors in the process. While we are in an initial stage of that integration, it is the moment to reflect on the students' perceptions of being assessed by a non-conscious software entity like a machine learning model or any other artificial intelligence application. As a result of the paper, we present a TAM-based model and a ready-to-use instrument based on five aspects concerning understanding technology adoption like the AI-based assessment on education. These aspects are perceived usefulness, perceived ease of use, attitude towards use, behavioral intention, and actual use. The paper's outcomes can be relevant to the research community since there is a lack of this kind of proposal in the literature.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_6_4_8.pdf
    Tamaño: 658.8Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 4, december 2020

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    42
    8
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    16
    12

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Proposing a Machine Learning Approach to Analyze and Predict Employment and its Factors 

      García-Peñalvo, Francisco; Cruz-Benito, Juan; Martín-González, Martín; Vázquez-Ingelmo, Andrea; Sánchez-Prieto, José Carlos; Therón, Roberto (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2018)
      This paper presents an original study with the aim of propose and test a machine learning approach to research about employability and employment. To understand how the graduates get employed, researchers propose to build ...
    • Application of Artificial Intelligence Algorithms Within the Medical Context for Non-Specialized Users: the CARTIER-IA Platform 

      García-Peñalvo, Francisco; Vázquez-Ingelmo, Andrea; García-Holgado, Alicia; Sampedro-Gómez, Jesús; Sánchez-Puente, Antonio; Vicente-Palacios, Víctor; Dorado-Díaz, P. Ignacio; Sánchez, Pedro L. (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2021)
      The use of advanced algorithms and models such as Machine Learning, Deep Learning and other related approaches of Artificial Intelligence have grown in their use given their benefits in different contexts. One of these ...
    • KoopaML: A Graphical Platform for Building Machine Learning Pipelines Adapted to Health Professionals 

      García-Peñalvo, Francisco; Vázquez-Ingelmo, Andrea; García-Holgado, Alicia; Sampedro-Gómez, Jesús; Sánchez-Puente, Antonio; Vicente-Palacios, Víctor; Dorado-Díaz, P. Ignacio; Sánchez, Pedro L. (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 01/2023)
      Machine Learning (ML) has extended its use in several domains to support complex analyses of data. The medical field, in which significant quantities of data are continuously generated, is one of the domains that can benefit ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja