• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 4, december 2020
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 4, december 2020
    • Ver ítem

    Data Science Techniques for COVID-19 in Intensive Care Units

    Autor: 
    Muñoz Lezcano, Sergio
    ;
    López Hernández, Fernando Carlos
    ;
    Corbi, Alberto
    Fecha: 
    12/2020
    Palabra clave: 
    coronavirus COVID-19; data mining; machine learning; image processing; biomarkers; X-ray; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12834
    DOI: 
    https://doi.org/10.9781/ijimai.2020.11.008
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2844
    Open Access
    Resumen:
    Data scientists aim to provide techniques and tools to the clinicians to manage the new coronavirus disease. Nowadays, new emerging tools based on Artificial Intelligence (AI), Image Processing (IP) and Machine Learning (ML) are contributing to the improvement of healthcare and treatments of different diseases. This paper reviews the most recent research efforts and approaches related to these new data driven techniques and tools in combination with the exploitation of the already available COVID-19 datasets. The tools can assist clinicians and nurses in efficient decision making with complex and heavily heterogeneous data, even in hectic and overburdened Intensive Care Units (ICU) scenarios. The datasets and techniques underlying these tools can help finding a more correct diagnosis. The paper also describes how these innovative AI+IP+ML-based methods (e.g., conventional X-ray imaging, clinical laboratory data, respiratory monitoring and automatic adjustments, etc.) can assist in the process of easing both the care of infected patients in ICUs and Emergency Rooms and the discovery of new treatments (drugs).
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_6_4_1_0.pdf
    Tamaño: 1.458Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 4, december 2020

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    32
    39
    86
    50
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    42
    44
    65
    35

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Data Science Techniques for COVID-19 in Intensive Care Units 

      Muñoz Lezcano, Sergio ; López Hernández, Fernando ; Corbi, Alberto (International Journal of Interactive Multimedia and Artificial Intelligence, 12/2020)
      Data scientists aim to provide techniques and tools to the clinicians to manage the new coronavirus disease. Nowadays, new emerging tools based on Artificial Intelligence (AI), Image Processing (IP) and Machine Learning ...
    • Predictores de ventilación mecánica y mortalidad en pacientes críticos con neumonía por COVID-19 

      Muñoz-Lezcano, Sergio; Armengol de la Hoz, Miguel Ángel; Corbi, Alberto; López, Fernando; Sánchez García, Miguel; Nuñez Reiz, Antonio; Fariña González, Tomás; Yordanov Zlatkov, Viktor (Medicina Intensiva, 2024)
      Objetivo: Determinar si las variables clínicas independientes que condicionan el inicio de ventilación mecánica invasiva (VMI) son los mismos que condicionan la mortalidad en el síndrome de distrés respiratorio agudo ...
    • Residue properties for the arithmetical estimation of the image quantization table 

      López Hernández, Fernando ; Giménez de Ory, Elena ; Ríos Aguilar, Sergio ; González-Crespo, Rubén (Applied Soft Computing, 06/2018)
      Ttaditionally, a statistical approach has been used to detect the JPEG quantization table used to compressa bitmap. This approach has the disadvantage that at times false solutions are found. These false solutions may have ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja