• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 2, june 2020
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 2, june 2020
    • Ver ítem

    COVID-19 Detection in Chest X-ray Images using a Deep Learning Approach

    Autor: 
    Saiz, Fátima
    ;
    Barandiaran, Iñigo
    Fecha: 
    06/2020
    Palabra clave: 
    deep learning; coronavirus COVID-19; object detection; X-ray; convolutional neural network (CNN); IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12749
    DOI: 
    https://doi.org/10.9781/ijimai.2020.04.003
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2763
    Open Access
    Resumen:
    The Corona Virus Disease (COVID-19) is an infectious disease caused by a new virus that has not been detected in humans before. The virus causes a respiratory illness like the flu with various symptoms such as cough or fever that, in severe cases, may cause pneumonia. The COVID-19 spreads so quickly between people, affecting to 1,200,000 people worldwide at the time of writing this paper (April 2020). Due to the number of contagious and deaths are continually growing day by day, the aim of this study is to develop a quick method to detect COVID-19 in chest X-ray images using deep learning techniques. For this purpose, an object detection architecture is proposed, trained and tested with a public available dataset composed with 1500 images of non-infected patients and infected with COVID-19 and pneumonia. The main goal of our method is to classify the patient status either negative or positive COVID-19 case. In our experiments using SDD300 model we achieve a 94.92% of sensibility and 92.00% of specificity in COVID-19 detection, demonstrating the usefulness application of deep learning models to classify COVID-19 in X-ray images.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_6_2_2.pdf
    Tamaño: 549.0Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 2, june 2020

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    263
    261
    304
    184
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    82
    138
    153
    53

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Estudio de arquitecturas para la extracción y explotación de datos de defectos superficiales mediante técnicas de Deep Learning 

      Saiz-Álvaro, Fátima Aurora (26/07/2018)
      En este trabajo se realiza un estudio de arquitecturas de extracción y explotación de datos sobre defectos superficiales producidos en la laminación del acero mediante técnicas de Deep Learning, así como el almacenamiento ...
    • Characterization of molecular biomarkers in cerebrospinal fluid and serum of E46K-SNCA mutation carriers 

      Murueta-Goyena, Ane; Cipriani, Raffaela; Carmona-Abellán, Mar; Acera, Marian; Ayo, Naia; del Pino, Rocio ; Tijero, Beatriz; Fernández-Valle, Tamara; Gabilondo, Iñigo; Zallo, Fátima; Matute, Carlos; Sánchez-Pernaute, Rosario; Khurana, Vikram; Cavaliere, Fabio; Capetillo-Zarate, Estibaliz; Gómez-Esteban, Juan Carlos (Elsevier Ltd, 2022)
      Introduction: Blood and cerebrospinal fluid represent emerging candidate fluids for biomarker identification in Parkinson's disease (PD). Methods: We studied 8 individuals carrying the E46K-SNCA mutation (3 PD dementia ...
    • Vaccine Hesitancy on Social Media: Sentiment Analysis from June 2011 to April 2019 

      Piedrahita-Valdés, Hilary; Piedrahita Castillo, Diego ; Bermejo-Higuera, Javier ; Guillem-Saiz, Patricia; Bermejo Higuera, Juan Ramón ; Guillem-Saiz, Javier; Sicilia, Juan Antonio ; Machío-Regidor, Francisco (Vaccines, 01/2021)
      Vaccine hesitancy was one of the ten major threats to global health in 2019, according to the World Health Organisation. Nowadays, social media has an important role in the spread of information, misinformation, and ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja