COVID-19 Detection in Chest X-ray Images using a Deep Learning Approach
Autor:
Saiz, Fátima
; Barandiaran, Iñigo
Fecha:
06/2020Palabra clave:
Revista / editorial:
International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)Tipo de Ítem:
articleDirección web:
https://www.ijimai.org/journal/bibcite/reference/2763Resumen:
The Corona Virus Disease (COVID-19) is an infectious disease caused by a new virus that has not been detected in humans before. The virus causes a respiratory illness like the flu with various symptoms such as cough or fever that, in severe cases, may cause pneumonia. The COVID-19 spreads so quickly between people, affecting to 1,200,000 people worldwide at the time of writing this paper (April 2020). Due to the number of contagious and deaths are continually growing day by day, the aim of this study is to develop a quick method to detect COVID-19 in chest X-ray images using deep learning techniques. For this purpose, an object detection architecture is proposed, trained and tested with a public available dataset composed with 1500 images of non-infected patients and infected with COVID-19 and pneumonia. The main goal of our method is to classify the patient status either negative or positive COVID-19 case. In our experiments using SDD300 model we achieve a 94.92% of sensibility and 92.00% of specificity in COVID-19 detection, demonstrating the usefulness application of deep learning models to classify COVID-19 in X-ray images.
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
263 |
261 |
304 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
82 |
138 |
151 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Estudio de arquitecturas para la extracción y explotación de datos de defectos superficiales mediante técnicas de Deep Learning
Saiz-Álvaro, Fátima Aurora (26/07/2018)En este trabajo se realiza un estudio de arquitecturas de extracción y explotación de datos sobre defectos superficiales producidos en la laminación del acero mediante técnicas de Deep Learning, así como el almacenamiento ... -
Characterization of molecular biomarkers in cerebrospinal fluid and serum of E46K-SNCA mutation carriers
Murueta-Goyena, Ane; Cipriani, Raffaela; Carmona-Abellán, Mar; Acera, Marian; Ayo, Naia; del Pino, Rocio ; Tijero, Beatriz; Fernández-Valle, Tamara; Gabilondo, Iñigo; Zallo, Fátima; Matute, Carlos; Sánchez-Pernaute, Rosario; Khurana, Vikram; Cavaliere, Fabio; Capetillo-Zarate, Estibaliz; Gómez-Esteban, Juan Carlos (Elsevier Ltd, 2022)Introduction: Blood and cerebrospinal fluid represent emerging candidate fluids for biomarker identification in Parkinson's disease (PD). Methods: We studied 8 individuals carrying the E46K-SNCA mutation (3 PD dementia ... -
Vaccine Hesitancy on Social Media: Sentiment Analysis from June 2011 to April 2019
Piedrahita-Valdés, Hilary; Piedrahita Castillo, Diego ; Bermejo-Higuera, Javier ; Guillem-Saiz, Patricia; Bermejo Higuera, Juan Ramón ; Guillem-Saiz, Javier; Sicilia, Juan Antonio ; Machío-Regidor, Francisco (Vaccines, 01/2021)Vaccine hesitancy was one of the ten major threats to global health in 2019, according to the World Health Organisation. Nowadays, social media has an important role in the spread of information, misinformation, and ...