• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 2, june 2020
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 2, june 2020
    • Ver ítem

    Transmission Dynamics Model of Coronavirus COVID-19 for the Outbreak in Most Affected Countries of the World

    Autor: 
    Dur-e-Ahmad, Muhammad
    ;
    Imran, Mudassar
    Fecha: 
    06/2020
    Palabra clave: 
    sensitivity; coronavirus COVID-19; basic reproductive number; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12732
    DOI: 
    https://doi.org/10.9781/ijimai.2020.04.001
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2761
    Open Access
    Resumen:
    The wide spread of coronavirus (COVID-19) has threatened millions of lives and damaged the economy worldwide. Due to the severity and damage caused by the disease, it is very important to fore-tell the epidemic lifetime in order to take timely actions. Unfortunately, the lack of accurate information and unavailability of large amount of data at this stage make the task more difficult. In this paper, we used the available data from the mostly affected countries by COVID-19, (China, Iran, South Korea and Italy) and fit this with the SEIR type model in order to estimate the basic reproduction number R_0. We also discussed the development trend of the disease. Our model is quite accurate in predicting the current pattern of the infected population. We also performed sensitivity analysis on all the parameters used that are affecting the value of R0.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_6_2_1.pdf
    Tamaño: 627.1Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 2, june 2020

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    131
    91
    104
    42
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    60
    58
    52
    26

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Fast hybrid-MixNet for security and privacy using NTRU algorithm 

      Ahmad, Khaleel; Kamal, Afsar; Bin Ahmad, Khairol Amali; Khari, Manju; González-Crespo, Rubén (Journal of information security and applications, 2021)
      Security and privacy-enhancing techniques are developed in order to provide strong protection over the Internet. These techniques aim to enable the users to keep their identities secret during the communication when they ...
    • A New Model for Brain Tumor Detection Using Ensemble Transfer Learning and Quantum Variational Classifier 

      Amin, Javeria; Anjum, Muhammad Almas; Sharif, Muhammad; Jabeen, Saima; Kadry, Seifedine; Moreno-Ger, Pablo (Computational Intelligence and Neuroscience, 2022)
      A brain tumor is an abnormal enlargement of cells if not properly diagnosed. Early detection of a brain tumor is critical for clinical practice and survival rates. Brain tumors arise in a variety of shapes, sizes, and ...
    • Detection of anomaly in surveillance videos using quantum convolutional neural networks 

      Amin, Javeria; Anjum, Muhammad Almas; Ibrar, Kainat; Sharif, Muhammad; Kadry, Seifedine; González-Crespo, Rubén (Image and Vision Computing, 2023)
      Anomalous behavior identification is the process of detecting behavior that differs from its normal. These incidents will vary from violence to war, road crashes to kidnapping, and so on in a surveillance model. Video ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja