• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 2, june 2020
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 2, june 2020
    • Ver ítem

    Incremental Hierarchical Clustering driven Automatic Annotations for Unifying IoT Streaming Data

    Autor: 
    Núñez-Valdez, Edward
    ;
    Solanki, Vijender Kumar
    ;
    Balakrishna, Sivadi
    ;
    Thirumaran, M
    Fecha: 
    06/2020
    Palabra clave: 
    internet of things; clustering; agents; sensor; semantics; automatic annotation; hierarchical clustering; health; SPARQL; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12729
    DOI: 
    https://doi.org/10.9781/ijimai.2020.03.001
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2757
    Open Access
    Resumen:
    In the Internet of Things (IoT), Cyber-Physical Systems (CPS), and sensor technologies huge and variety of streaming sensor data is generated. The unification of streaming sensor data is a challenging problem. Moreover, the huge amount of raw data has implied the insufficiency of manual and semi-automatic annotation and leads to an increase of the research of automatic semantic annotation. However, many of the existing semantic annotation mechanisms require many joint conditions that could generate redundant processing of transitional results for annotating the sensor data using SPARQL queries. In this paper, we present an Incremental Clustering Driven Automatic Annotation for IoT Streaming Data (IHC-AA-IoTSD) using SPARQL to improve the annotation efficiency. The processes and corresponding algorithms of the incremental hierarchical clustering driven automatic annotation mechanism are presented in detail, including data classification, incremental hierarchical clustering, querying the extracted data, semantic data annotation, and semantic data integration. The IHCAA-IoTSD has been implemented and experimented on three healthcare datasets and compared with leading approaches namely- Agent-based Text Labelling and Automatic Selection (ATLAS), Fuzzy-based Automatic Semantic Annotation Method (FBASAM), and an Ontology-based Semantic Annotation Approach (OBSAA), yielding encouraging results with Accuracy of 86.67%, Precision of 87.36%, Recall of 85.48%, and F-score of 85.92% at 100k triple data.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_6_2_7_0.pdf
    Tamaño: 1.840Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 2, june 2020

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    57
    64
    73
    35
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    16
    87
    64
    54

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • A proposal for sentiment analysis on twitter for tourism-based applications 

      Guzmán De Núñez, Xiomarah Maria ; Núñez-Valdez, Edward Rolando; Pascual Espada, Jordán; González-Crespo, Rubén ; Garcia-Díaz, Vicente (Frontiers in Artificial Intelligence and Applications, 2018)
      People rely on other people’s opinions to make decisions, especially if they belong to their circle of trust. In addition, there are lots of websites of recognized prestige that provide people opinions about different ...
    • Social Voting Techniques: A Comparison of the Methods Used for Explicit Feedback in Recommendation Systems 

      Nuñez-Valdez, Edward Rolando; Cueva-Lovelle, Juan Manuel; Sanjuan, Oscar; Montenegro-Marin, Carlos Enrique; Infante Hernandez, Guillermo (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2011)
      Web recommendation systems usually brings a content list to users based on previous ratings made by them to other similar contents through some social voting mean. This paper aims to present a comparison of the main ...
    • Towards an Ontology to Describe the Taxonomy of Common Modules in Learning Management Systems 

      Montenegro-Marin, Carlos Enrique; Cueva-Lovelle, Juan Manuel; Sanjuan, Oscar; Nuñez-Valdez, Edward Rolando (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2011)
      This article have the objective a create ontology for "common modules in a Learning Management Systems", the steps for the build Ontology were: Determine the domain and scope of the ontology, Consider reusing existing ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja