• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 1, march 2020
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2020
    • vol. 6, nº 1, march 2020
    • Ver ítem

    Fuzzy C-Means Clustering with Histogram based Cluster Selection for Skin Lesion Segmentation using Non-Dermoscopic Images

    Autor: 
    Devi, Salam Shuleenda
    ;
    Laskar, Rabul Hussain
    ;
    Singh, Ngangbam Herojit
    Fecha: 
    03/2020
    Palabra clave: 
    fuzzy; clustering; melanoma; medical images; image segmentation; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12717
    DOI: 
    https://doi.org/10.9781/ijimai.2020.01.001
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2748
    Open Access
    Resumen:
    Purpose – Pre-screening of skin lesion for malignancy is highly demanded as melanoma being a life-threatening skin cancer due to unpaired DNA damage. In this paper, lesion segmentation based on Fuzzy C-Means clustering using non-dermoscopic images has been proposed. Design/methodology/approach – The proposed methodology consists of automatic cluster selection for FCM using the histogram property. The system used the local maxima along with Euclidean distance to detect the binomial distribution property of the image histogram, to segment the melanoma from normal skin. As the Value channel of HSV color image provides better and distinct histogram distribution based on the entropy, it has been used for segmentation purpose. Findings – The proposed system can effectively segment the lesion region from the normal skin. The system provides a segmentation accuracy of 95.69 % and the comparative analysis has been performed with various segmentation methods. From the analysis, it has been observed that the proposed system can effectively segment the lesion region from normal skin automatically. Originality/Value – This paper suggests a new approach for skin lesion segmentation based on FCM with automatic cluster selection. Here, different color channel has also been analyzed using entropy to select the better channel for segmentation. In future, the classification of melanoma from benign naevi can be performed.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai20206_1_3_pdf_17885.pdf
    Tamaño: 1.206Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 1, march 2020

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    117
    96
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    46
    49

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Predictive text analysis using eye blinks 

      Chaudhary, Gopal; Lamba, Puneet Singh; Jolly, Harman Singh; Poply, Sakaar; Khari, Manju; Verdú, Elena (Elsevier Ltd, 2021)
      The current work aims to facilitate interaction with others to those with the inability to perform activities requiring motor skills or those who cannot speak. It proposes a modus operandi or a system based on Histogram ...
    • Infected Fruit Part Detection using K-Means Clustering Segmentation Technique 

      Dubey, Shiv Ram; Dixit, Pushkar; Singh, Nishant; Gupta, Jay Prakash (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2013)
      Nowadays, overseas commerce has increased drastically in many countries. Plenty fruits are imported from the other nations such as oranges, apples etc. Manual identification of defected fruit is very time consuming. This ...
    • Robust Lossless Semi Fragile Information Protection in Images 

      Dixit, Pushkar; Singh, Nishant; Prakash Gupta, Jay (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2014)
      Internet security finds it difficult to keep the information secure and to maintain the integrity of the data. Sending messages over the internet secretly is one of the major tasks as it is widely used for passing the ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja