• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2019
    • vol. 5, nº 7, december 2019
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2019
    • vol. 5, nº 7, december 2019
    • Ver ítem

    Voltage Stability Enhancement Based on Optimal Allocation of Shunt Compensation Devices Using Lightning attachment procedure optimization

    Autor: 
    Kamel, Salah
    ;
    Youssef, Heba
    Fecha: 
    12/2019
    Palabra clave: 
    sensitivity; voltage stability; shunt compensation devices; optimal power flow; lightning attachment procedure optimization; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12667
    DOI: 
    http://doi.org/10.9781/ijimai.2019.10.001
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2743
    Open Access
    Resumen:
    This paper proposes a combined approach to determine the optimal allocation of different shunt compensation devices (shunt capacitor, static var compensator, and static synchronous compensator) in power systems. The developed approach is a combination between Lightning Attachment Procedure Optimization (LAPO) and loss sensitivity indices (LSIs). Different objective functions such as enhancement of voltage stability index, improvement of voltage profile and minimization of total power losses are considered. Two loss sensitivity indices (LSIs) are developed to reduce the search space in all buses and the total computation time. The developed algorithm is validated using standard IEEE 14-bus and IEEE 30-bus test systems. The developed algorithm successes to achieve the objective functions with the better performance compared with other wellknown optimization techniques such as Teaching learning-based optimization (TLBO), genetic algorithm (GA) and particle swarm optimization (PSO).
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai20195_7_13_pdf_13640.pdf
    Tamaño: 1.944Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 5, nº 7, december 2019

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    54
    68
    99
    56
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    95
    85
    60
    13

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Performance Enhancement of Wind Farms Using Tuned SSSC Based on Artificial Neural Network 

      Kamel, Salah; Jurado, Francisco; Rashad, Ahmed; Ibrahim, Yousry; Nasrat, Loai (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2019)
      Recently, power systems are confronting a lot of challenges. Increasing the dependence on renewable energy sources especially wind energy and its impact on the stability of electrical systems are the most important challenges. ...
    • Voltage Stability Assessment of Radial Distribution Systems Including Optimal Allocation of Distributed Generators 

      Selim, Ali; Kamel, Salah; Jurado, Francisco; Nasrat, Loai (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2020)
      Assessment of power systems voltage stability is considered an important assignment for the operation and planning of power system. In this paper, a voltage stability study using Continuous Power Flow (CPF) is introduced ...
    • Tree Growth Algorithm for Parameter Identification of Proton Exchange Membrane Fuel Cell Models 

      Kamel, Salah; Jurado, Francisco; Sultan, Hamdy; Menesy, Ahmed (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2020)
      Demonstrating an accurate mathematical model is a mandatory issue for realistic simulation, optimization and performance evaluation of proton exchange membrane fuel cells (PEMFCs). The main goal of this study is to demonstrate ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja