• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2019
    • vol. 5, nº 5, june 2019
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2019
    • vol. 5, nº 5, june 2019
    • Ver ítem

    Improved Behavior Monitoring and Classification Using Cues Parameters Extraction from Camera Array Images

    Autor: 
    Jalal, Ahmad
    ;
    Kamal, Shaharyar
    Fecha: 
    06/2019
    Palabra clave: 
    body posture recognition system; activity recognition; smartCities; pattern clustering; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12503
    DOI: 
    http://doi.org/10.9781/ijimai.2017.07.003
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2683
    Open Access
    Resumen:
    Behavior monitoring and classification is a mechanism used to automatically identify or verify individual based on their human detection, tracking and behavior recognition from video sequences captured by a depth camera. In this paper, we designed a system that precisely classifies the nature of 3D body postures obtained by Kinect using an advanced recognizer. We proposed novel features that are suitable for depth data. These features are robust to noise, invariant to translation and scaling, and capable of monitoring fast human bodyparts movements. Lastly, advanced hidden Markov model is used to recognize different activities. In the extensive experiments, we have seen that our system consistently outperforms over three depth-based behavior datasets, i.e., IM-DailyDepthActivity, MSRDailyActivity3D and MSRAction3D in both posture classification and behavior recognition. Moreover, our system handles subject's body parts rotation, self-occlusion and body parts missing which significantly track complex activities and improve recognition rate. Due to easy accessible, low-cost and friendly deployment process of depth camera, the proposed system can be applied over various consumer-applications including patient-monitoring system, automatic video surveillance, smart homes/offices and 3D games.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_5_5_9_pdf_48446.pdf
    Tamaño: 564.8Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 5, nº 5, june 2019

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    54
    90
    83
    103
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    86
    48
    41
    41

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Fast hybrid-MixNet for security and privacy using NTRU algorithm 

      Ahmad, Khaleel; Kamal, Afsar; Bin Ahmad, Khairol Amali; Khari, Manju; González-Crespo, Rubén (Journal of information security and applications, 2021)
      Security and privacy-enhancing techniques are developed in order to provide strong protection over the Internet. These techniques aim to enable the users to keep their identities secret during the communication when they ...
    • A Depth Video-based Human Detection and Activity Recognition using Multi-features and Embedded Hidden Markov Models for Health Care Monitoring Systems 

      Jalal, Ahmad; Kamal, Shaharyar; Kim, Daijin (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2017)
      Increase in number of elderly people who are living independently needs especial care in the form of healthcare monitoring systems. Recent advancements in depth video technologies have made human activity recognition (HAR) ...
    • Deep Multi-Model Fusion for Human Activity Recognition Using Evolutionary Algorithms 

      Verma, Kamal Kant; Singh, Brij Mohan (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2021)
      Machine recognition of the human activities is an active research area in computer vision. In previous study, either one or two types of modalities have been used to handle this task. However, the grouping of maximum ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja