• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2017
    • vol. 4, nº 4, june 2017
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2017
    • vol. 4, nº 4, june 2017
    • Ver ítem

    A Depth Video-based Human Detection and Activity Recognition using Multi-features and Embedded Hidden Markov Models for Health Care Monitoring Systems

    Autor: 
    Jalal, Ahmad
    ;
    Kamal, Shaharyar
    ;
    Kim, Daijin
    Fecha: 
    06/2017
    Palabra clave: 
    feature extraction; hidden markov models; monitoring; human detection activity; IJIMAI
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/11756
    DOI: 
    http://doi.org/10.9781/ijimai.2017.447
    Dirección web: 
    https://ijimai.org/journal/bibcite/reference/2606
    Open Access
    Resumen:
    Increase in number of elderly people who are living independently needs especial care in the form of healthcare monitoring systems. Recent advancements in depth video technologies have made human activity recognition (HAR) realizable for elderly healthcare applications. In this paper, a depth video-based novel method for HAR is presented using robust multi-features and embedded Hidden Markov Models (HMMs) to recognize daily life activities of elderly people living alone in indoor environment such as smart homes. In the proposed HAR framework, initially, depth maps are analyzed by temporal motion identification method to segment human silhouettes from noisy background and compute depth silhouette area for each activity to track human movements in a scene. Several representative features, including invariant, multi-view differentiation and spatiotemporal body joints features were fused together to explore gradient orientation change, intensity differentiation, temporal variation and local motion of specific body parts. Then, these features are processed by the dynamics of their respective class and learned, modeled, trained and recognized with specific embedded HMM having active feature values. Furthermore, we construct a new online human activity dataset by a depth sensor to evaluate the proposed features. Our experiments on three depth datasets demonstrated that the proposed multi-features are efficient and robust over the state of the art features for human action and activity recognition.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai20174_4_7_pdf_14110.pdf
    Tamaño: 1.560Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 4, nº 4, june 2017

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    23
    71
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    15
    32

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Fast hybrid-MixNet for security and privacy using NTRU algorithm 

      Ahmad, Khaleel; Kamal, Afsar; Bin Ahmad, Khairol Amali; Khari, Manju; González-Crespo, Rubén (1) (Journal of information security and applications, 2021)
      Security and privacy-enhancing techniques are developed in order to provide strong protection over the Internet. These techniques aim to enable the users to keep their identities secret during the communication when they ...
    • Improved Behavior Monitoring and Classification Using Cues Parameters Extraction from Camera Array Images 

      Jalal, Ahmad; Kamal, Shaharyar (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2019)
      Behavior monitoring and classification is a mechanism used to automatically identify or verify individual based on their human detection, tracking and behavior recognition from video sequences captured by a depth camera. ...
    • mlCAF: Multi-Level Cross-Domain Semantic Context Fusioning for Behavior Identification 

      Asif Razzaq, Muhammad; Villalonga, Claudia (1); Sungyoung, Lee; Akhtar, Usman; Ali, Maqbool; Kim, Eun-Soo; Masood Khattak, Asad; Seung, Hyonwoo; Hur, Taeho; Bang, Jaehun; Kim, Dohyeong; Ali Khan, Wajahat (Sensors, 10/2017)
      The emerging research on automatic identification of user’s contexts from the cross-domain environment in ubiquitous and pervasive computing systems has proved to be successful. Monitoring the diversified user’s contexts ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja