• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2018
    • vol. 5, nº 3, december 2018
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2018
    • vol. 5, nº 3, december 2018
    • Ver ítem

    A New Feature Selection Method based on Intuitionistic Fuzzy Entropy to Categorize Text Documents

    Autor: 
    Harish, B S
    ;
    Revanasiddappa, M B
    Fecha: 
    12/2018
    Palabra clave: 
    feature selection; high dimensionality; intuitionistic fuzzy entropy; text categorization; IJIMAI
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12400
    DOI: 
    http://doi.org/10.9781/ijimai.2018.04.002
    Dirección web: 
    https://ijimai.org/journal/bibcite/reference/2667
    Open Access
    Resumen:
    Selection of highly discriminative feature in text document plays a major challenging role in categorization. Feature selection is an important task that involves dimensionality reduction of feature matrix, which in turn enhances the performance of categorization. This article presents a new feature selection method based on Intuitionistic Fuzzy Entropy (IFE) for Text Categorization. Firstly, Intuitionistic Fuzzy C-Means (IFCM) clustering method is employed to compute the intuitionistic membership values. The computed intuitionistic membership values are used to estimate intuitionistic fuzzy entropy via Match degree. Further, features with lower entropy values are selected to categorize the text documents. To find the efficacy of the proposed method, experiments are conducted on three standard benchmark datasets using three classifiers. F-measure is used to assess the performance of the classifiers. The proposed method shows impressive results as compared to other well known feature selection methods. Moreover, Intuitionistic Fuzzy Set (IFS) property addresses the uncertainty limitations of traditional fuzzy set.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai_5_3_12_pdf_16348.pdf
    Tamaño: 782.1Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 5, nº 3, december 2018

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    92
    17
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    50
    15

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Anomaly based Intrusion Detection using Modified Fuzzy Clustering 

      Harish, B S; Kumar, S V A (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2017)
      This paper presents a network anomaly detection method based on fuzzy clustering. Computer security has become an increasingly vital field in computer science in response to the proliferation of private sensitive information. ...
    • Multilayer Feedforward Neural Network for Internet Traffic Classification 

      Harish, B S; Nagadarshan, N; Manju, N (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 03/2020)
      Recently, the efficient internet traffic classification has gained attention in order to improve service quality in IP networks. But the problem with the existing solutions is to handle the imbalanced dataset which has ...
    • Automatic Irony Detection using Feature Fusion and Ensemble Classifier 

      Harish, B S; Kumar, Keerthi (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2019)
      With the advent of micro-blogging sites, users are pioneer in expressing their sentiments and emotions on global issues through text. Automatic detection and classification of sentiments like sarcastic or ironic content ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja