Mostrar el registro sencillo del ítem

dc.contributor.authorFarhane, Nabil
dc.contributor.authorBoumhidi, Ismail
dc.contributor.authorBoumhidi, Jaouad
dc.date2017-12
dc.date.accessioned2021-09-13T10:43:59Z
dc.date.available2021-09-13T10:43:59Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/11834
dc.description.abstractIn this paper, a robust adaptive fuzzy neural network sliding mode (AFNNSM) control design is proposed to maximize the captured energy for a variable speed wind turbine and to minimize the efforts of the drive shaft. Fuzzy neural network (FNN) is used to improve the mathematical system model, by the prediction of model unknown function, which is used by the Sliding mode control approach (SMC) and enables a lower switching gain to be used despite the presence of large uncertainties. As a result, the used robust control action did not exhibit any chattering behavior. This FNN is trained on-line using the backpropagation algorithm (BP). The particle swarm optimization (PSO) algorithm is used in this study to optimize the learning rate of BP algorithm in order to improve the network performance in term of the speed of convergence. The stability is shown by the Lyapunov theory and the trajectory tracking errors converge to zero without any oscillatory behavior. Simulations illustrate the effectiveness of the designed method.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 4, nº 6
dc.relation.urihttps://ijimai.org/journal/bibcite/reference/2632es_ES
dc.rightsopenAccesses_ES
dc.subjectfuzzyes_ES
dc.subjectneural networkes_ES
dc.subjectparticle swarm optimizationes_ES
dc.subjectadaptive fuzzy neural network sliding modees_ES
dc.subjectsliding mode controles_ES
dc.subjectvariable speed wind turbinees_ES
dc.subjectIJIMAIes_ES
dc.titleSmart Algorithms to Control a Variable Speed Wind Turbinees_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttp://doi.org/10.9781/ijimai.2017.08.001


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem