• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2017
    • vol. 4, nº 6, december 2017
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2017
    • vol. 4, nº 6, december 2017
    • Ver ítem

    Nature Inspired Range Based Wireless Sensor Node Localization Algorithms

    Autor: 
    Arora, Sankalap
    ;
    Kaur, Ranjit
    Fecha: 
    12/2017
    Palabra clave: 
    localization; wireless sensor networks; flower pollination algorithm; particle swarm optimization; firefly algorithm; grey wolf optimization; IJIMAI
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/11819
    DOI: 
    http://doi.org/10.9781/ijimai.2017.03.009
    Dirección web: 
    https://ijimai.org/journal/bibcite/reference/2621
    Open Access
    Resumen:
    Localization is one of the most important factors highly desirable for the performance of Wireless Sensor Network (WSN). Localization can be stated as the estimation of the location of the sensor nodes in sensor network. In the applications of WSN, the data gathered at sink node will be meaningless without localization information of the nodes. Due to size and complexity factors of the localization problem, it can be formulated as an optimization problem and thus can be approached with optimization algorithms. In this paper, the nature inspired algorithms are used and analyzed for an optimal estimation of the location of sensor nodes. The performance of the nature inspired algorithms viz. Flower pollination algorithm (FPA), Firefly algorithm (FA), Grey Wolf Optimization (GWO) and Particle Swarm Optimization (PSO) for localization in WSN is analyzed in terms of localization accuracy, number of localized nodes and computing time. The comparative analysis has shown that FPA is more proficient in determining the coordinates of nodes by minimizing the localization error as compared to FA, PSO and GWO.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai20174_6_1_pdf_64773.pdf
    Tamaño: 5.102Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 4, nº 6, december 2017

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    38
    78
    19
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    19
    86
    9

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja