Mostrar el registro sencillo del ítem

dc.contributor.authorArora, Sankalap
dc.contributor.authorKaur, Ranjit
dc.date2017-12
dc.date.accessioned2021-09-10T07:48:11Z
dc.date.available2021-09-10T07:48:11Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/11819
dc.description.abstractLocalization is one of the most important factors highly desirable for the performance of Wireless Sensor Network (WSN). Localization can be stated as the estimation of the location of the sensor nodes in sensor network. In the applications of WSN, the data gathered at sink node will be meaningless without localization information of the nodes. Due to size and complexity factors of the localization problem, it can be formulated as an optimization problem and thus can be approached with optimization algorithms. In this paper, the nature inspired algorithms are used and analyzed for an optimal estimation of the location of sensor nodes. The performance of the nature inspired algorithms viz. Flower pollination algorithm (FPA), Firefly algorithm (FA), Grey Wolf Optimization (GWO) and Particle Swarm Optimization (PSO) for localization in WSN is analyzed in terms of localization accuracy, number of localized nodes and computing time. The comparative analysis has shown that FPA is more proficient in determining the coordinates of nodes by minimizing the localization error as compared to FA, PSO and GWO.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 4, nº 6
dc.relation.urihttps://ijimai.org/journal/bibcite/reference/2621es_ES
dc.rightsopenAccesses_ES
dc.subjectlocalizationes_ES
dc.subjectwireless sensor networkses_ES
dc.subjectflower pollination algorithmes_ES
dc.subjectparticle swarm optimizationes_ES
dc.subjectfirefly algorithmes_ES
dc.subjectgrey wolf optimizationes_ES
dc.subjectIJIMAIes_ES
dc.titleNature Inspired Range Based Wireless Sensor Node Localization Algorithmses_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttp://doi.org/10.9781/ijimai.2017.03.009


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem