Mostrar el registro sencillo del ítem

dc.contributor.authorMartínez-España, Raquel
dc.contributor.authorBueno-Crespo, Andrés
dc.contributor.authorGonzález García, Mariano
dc.contributor.authorFernández-López, Carmen
dc.date2019
dc.date.accessioned2021-07-28T11:59:41Z
dc.date.available2021-07-28T11:59:41Z
dc.identifier.urihttps://reunir.unir.net/handle/123456789/11684
dc.description.abstractCurrently, due to the global shortage of water, the use of reclaimed water from the Wastewater Treatment Plants (WWTPs) for the irrigation of crops is an alternative in areas with water scarcity. However, the use of this reclaimed water for vegetable irrigation is a potential entry of pharmaceutical products into the food chain due to the absorption and accumulation of these contaminants in different parts of the plants. In this work we carried out an analysis of five machine learning techniques (Random Forest, support vector machine, M5 Rules, Gaussian Process and artificial neural network) to predict the uptake of carbamazepine and diclofenac in reclaimed water-irrigated lettuces with the consequent saving of environmental and economic costs. For the different combinations of input and output, the prediction results using the of machine learning techniques proposed on the pharmaceutical components in reclaimed water-irrigated lettuces are satisfactory, being the best technique the Random Forest that obtains a model fit value (R-2) higher than 96.5% using a single input in the model and higher than 97% using two inputs in the model.es_ES
dc.language.isoenges_ES
dc.publisherAgriculture and environment perspectives in intelligent systemses_ES
dc.relation.ispartofseries;vol. 24
dc.relation.urihttps://ebooks.iospress.nl/publication/51586es_ES
dc.rightsrestrictedAccesses_ES
dc.subjectmachine learninges_ES
dc.subjectcarbamazepinees_ES
dc.subjectdiclofenaces_ES
dc.subjectreclaimed water-irrigatedes_ES
dc.subjectlettuceses_ES
dc.subjectWOS(2)es_ES
dc.titlePrediction of Uptake of Carbamazepine and Diclofenac in Reclaimed Water-Irrigated Lettuces by Machine Learning Techniqueses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.3233/AISE190005


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem