• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2016
    • vol. 4, nº 2, december 2016
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2016
    • vol. 4, nº 2, december 2016
    • Ver ítem

    Feature Selection for Image Retrieval based on Genetic Algorithm

    Autor: 
    Welekar, Rashmi
    ;
    Kushwaha, Preeti
    Fecha: 
    12/2016
    Palabra clave: 
    kmeans; genetic algorithms; clustering; feature extraction; IJIMAI
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/11621
    DOI: 
    http://doi.org/10.9781/ijimai.2016.423
    Dirección web: 
    https://ijimai.org/journal/bibcite/reference/2575
    Open Access
    Resumen:
    This paper describes the development and implementation of feature selection for content based image retrieval. We are working on CBIR system with new efficient technique. In this system, we use multi feature extraction such as colour, texture and shape. The three techniques are used for feature extraction such as colour moment, gray level co- occurrence matrix and edge histogram descriptor. To reduce curse of dimensionality and find best optimal features from feature set using feature selection based on genetic algorithm. These features are divided into similar image classes using clustering for fast retrieval and improve the execution time. Clustering technique is done by k-means algorithm. The experimental result shows feature selection using GA reduces the time for retrieval and also increases the retrieval precision, thus it gives better and faster results as compared to normal image retrieval system. The result also shows precision and recall of proposed approach compared to previous approach for each image class. The CBIR system is more efficient and better performs using feature selection based on Genetic Algorithm.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai20164_2_3_pdf_46881.pdf
    Tamaño: 627.9Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 4, nº 2, december 2016

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    23
    33
    2
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    10
    30
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Biometric iris recognition using radial basis function neural network 

      Dua, Megha; Gupta, Rashmi; Khari, Manju; González-Crespo, Rubén (1) (Soft Computing, 11/2019)
      The consistent and efficient method for the identification of biometrics is the iris recognition in view of the fact that it has richness in texture information. A good number of features performed in the past are built ...
    • Fast single image haze removal method for inhomogeneous environment using variable scattering coefficient 

      Gupta, Rashmi; Khari, Manju; Gupta, Vipul; Verdú, Elena (1); Wu, Xing; Herrera-Viedma, Enrique; González-Crespo, Rubén (1) (CMES - Computer Modeling in Engineering and Sciences, 2020)
      The images capture in a bad environment usually loses its fidelity and contrast. As the light rays travel towards its destination they get scattered several times due to the tiny particles of fog and pollutants in the ...
    • Fingerprint image enhancement and reconstruction using the orientation and phase reconstruction 

      Gupta, Rashmi; Khari, Manju; Gupta, Deepti; González-Crespo, Rubén (1) (Information Sciences, 08/2020)
      Fingerprints are the one of the most important means in the forensics as a means of identification of the criminals owning to the uniqueness and the distinct features in them. Fingerprint identification is considered as ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja