Mostrar el registro sencillo del ítem

dc.contributor.authorRamchoun, Hassan
dc.contributor.authorGhanou, Youssef
dc.contributor.authorEttaouil, Mohamed
dc.contributor.authorJanati Idrissi, Mohammed Amine
dc.date2016-09
dc.date.accessioned2021-07-07T10:37:59Z
dc.date.available2021-07-07T10:37:59Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/11569
dc.description.abstractThe multilayer perceptron has a large wide of classification and regression applications in many fields: pattern recognition, voice and classification problems. But the architecture choice has a great impact on the convergence of these networks. In the present paper we introduce a new approach to optimize the network architecture, for solving the obtained model we use the genetic algorithm and we train the network with a back-propagation algorithm. The numerical results assess the effectiveness of the theoretical results shown in this paper, and the advantages of the new modeling compared to the previous model in the literature.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 4, nº 1
dc.relation.urihttps://ijimai.org/journal/bibcite/reference/2523es_ES
dc.rightsopenAccesses_ES
dc.subjectgenetic algorithmses_ES
dc.subjectoptimizationes_ES
dc.subjectarchitecturees_ES
dc.subjectnonlinear operationes_ES
dc.subjectmultilayer perceptrones_ES
dc.subjectIJIMAIes_ES
dc.titleMultilayer Perceptron: Architecture Optimization and Traininges_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttp://doi.org/10.9781/ijimai.2016.415


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem