Improved Shape Parameter Estimation in K Clutter with Neural Networks and Deep Learning
Autor:
Machado Fernández, José Raúl
; Bacallao Vidal, Jesús de la Concepción
Fecha:
2016Palabra clave:
Revista / editorial:
International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)Tipo de Ítem:
Articulo Revista IndexadaDirección web:
https://www.ijimai.org/journal/bibcite/reference/2554Resumen:
The discrimination of the clutter interfering signal is
a current problem in modern radars’ design, especially in coastal
or offshore environments where the histogram of the background
signal often displays heavy tails. The statistical characterization
of this signal is very important for the cancellation of sea clutter,
whose behavior obeys a K distribution according to the commonly
accepted criterion. By using neural networks, the authors
propose a new method for estimating the K shape parameter,
demonstrating its superiority over the classic alternative based on
the Method of Moments. Whereas both solutions have a similar
performance when the entire range of possible values of the shape
parameter is evaluated, the neuronal alternative achieves a much
more accurate estimation for the lower Fig.s of the parameter. This
is exactly the desired behavior because the best estimate occurs
for the most aggressive states of sea clutter. The final design,
reached by processing three different sets of computer generated
K samples, used a total of nine neural networks whose contribution
is synthesized in the final estimate, thus the solution can be
interpreted as a deep learning approximation. The results are to
be applied in the improvement of radar detectors, particularly for
maintaining the operational false alarm probability close to the
one conceived in the design.
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
62 |
52 |
77 |
66 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
41 |
39 |
31 |
23 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Improved Shape Parameter Estimation in Pareto Distributed Clutter with Neural Networks
Bacallao-Vidal, Jesús Concepción; Machado-Fernández, José Raúl (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2016)The main problem faced by naval radars is the elimination of the clutter input which is a distortion signal appearing mixed with target reflections. Recently, the Pareto distribution has been related to sea clutter ... -
CA-CFAR Adjustment Factor Correction with a priori Knowledge of the Clutter Distribution Shape Parameter
Machado-Fernández, José Raúl; Bacallao-Vidal, Jesús Concepción; Torres Martinez, Shirley (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2017)Oceanic and coastal radars operation is affected because the targets information is received mixed with and undesired contribution called sea clutter. Specifically, the popular CA-CFAR processor is incapable of maintaining ... -
I Congreso Español de Videojuegos 2022
González Calero, Pedro Antonio; Gómez Martín, Marco Antonio; Gómez Martín, Pedro Pablo; Gutiérrez Manjón, Sergio; Gutiérrez Sánchez, Pablo; Peinado, Federico; Sánchez-Ruiz Granados, Antonio; Barbancho, Isabel; Blanco Bueno, Carlos; Botella Nicolás, Ana María; Chover, Miguel; Díaz Álvarez, Josefa; Echeverría, Jorge; Fernández Leiva, Antonio J.; Fernández Ruiz, Marta; Gallego-Durán, Francisco; García Sánchez, Pablo; Gutiérrez Vela, Francisco L; Lara-Cabrera, Raúl; León, Carlos; Moreno, Jorge L.; Lozano Muñoz, Alejandro; Mayor, Jesús; Medina Medina, Nuria; Mejías-Climent, Laura; Mora, Antonio M; Munarriz, Jaime; Patow, Gustavo A.; Sagredo-Olivenza, Ismael; Salinas, María-José; Sanchez I. Peris, Francesc Josep; Sánchez-Ruiz, Antonio A; Shliakhovchuk, Elena; Tejada, Jesus (CEUR Workshop Proceedings, 2022){Resumen no disponible]