Mostrar el registro sencillo del ítem

dc.contributor.authorMachado Fernández, José Raúl
dc.contributor.authorBacallao Vidal, Jesús de la Concepción
dc.date2016
dc.date.accessioned2021-04-21T14:41:13Z
dc.date.available2021-04-21T14:41:13Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/11236
dc.description.abstractThe discrimination of the clutter interfering signal is a current problem in modern radars’ design, especially in coastal or offshore environments where the histogram of the background signal often displays heavy tails. The statistical characterization of this signal is very important for the cancellation of sea clutter, whose behavior obeys a K distribution according to the commonly accepted criterion. By using neural networks, the authors propose a new method for estimating the K shape parameter, demonstrating its superiority over the classic alternative based on the Method of Moments. Whereas both solutions have a similar performance when the entire range of possible values of the shape parameter is evaluated, the neuronal alternative achieves a much more accurate estimation for the lower Fig.s of the parameter. This is exactly the desired behavior because the best estimate occurs for the most aggressive states of sea clutter. The final design, reached by processing three different sets of computer generated K samples, used a total of nine neural networks whose contribution is synthesized in the final estimate, thus the solution can be interpreted as a deep learning approximation. The results are to be applied in the improvement of radar detectors, particularly for maintaining the operational false alarm probability close to the one conceived in the design.es_ES
dc.language.isospaes_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseriesvol. 3;nº 7
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/2554es_ES
dc.rightsopenAccesses_ES
dc.subjectsea clutteres_ES
dc.subjectK distributiones_ES
dc.subjectshape parameter estimationes_ES
dc.subjectartificial neural networkses_ES
dc.subjectdeep learninges_ES
dc.subjectIJIMAIes_ES
dc.titleImproved Shape Parameter Estimation in K Clutter with Neural Networks and Deep Learninges_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttp://doi.org/ 10.9781/ijimai.2016.3714


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem