Mostrar el registro sencillo del ítem

dc.contributor.authorAmat, Sergio
dc.contributor.authorBusquier, Sonia
dc.contributor.authorMagreñán, Á. Alberto
dc.date2018
dc.date.accessioned2020-09-07T11:29:20Z
dc.date.available2020-09-07T11:29:20Z
dc.identifier.isbn9780735416901
dc.identifier.issn0094-243X
dc.identifier.urihttps://reunir.unir.net/handle/123456789/10524
dc.descriptionPonencia de la conferencia "International Conference of Numerical Analysis and Applied Mathematics, ICNAAM 2017; The MET HotelThessaloniki; Greece; 25 September 2017 through 30 September 2017"es_ES
dc.description.abstractThe main goal of this paper is to approximate some matrix functions by using a family of high-order Newton-type iterative methods. We analyse the semilocal convergence and the speed of convergence of these methods. Concerning stability, it is well known that even the simplified Newton method can be unstable. Despite it, we present stable versions of our family of algorithms for several matrix functions. We test numerically the methods: we check the numerical robustness and stability by considering matrices that are close to be singular and badly conditioned. We find algorithms of the family with better numerical behavior than the Newton and the Halley methods. These two algorithms are basically the iterative methods proposed in the literature to solve many of this type of problems.es_ES
dc.language.isoenges_ES
dc.publisherAIP Conference Proceedingses_ES
dc.relation.ispartofseries;vol. 1978
dc.relation.urihttps://aip.scitation.org/doi/abs/10.1063/1.5043941es_ES
dc.rightsrestrictedAccesses_ES
dc.subjectScopus(2)es_ES
dc.subjectWOS(2)es_ES
dc.titleOn a Newton-type family of high-order iterative methods for some matrix functionses_ES
dc.typeconferenceObjectes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1063/1.5043941


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem