Mostrar el registro sencillo del ítem
Ball convergence for eighth order method
dc.contributor.author | Argyros, Ioannis K | |
dc.contributor.author | Magreñán, Á. Alberto | |
dc.date | 2017 | |
dc.date.accessioned | 2020-09-02T14:19:49Z | |
dc.date.available | 2020-09-02T14:19:49Z | |
dc.identifier.isbn | 9781315153469 | |
dc.identifier.uri | https://reunir.unir.net/handle/123456789/10501 | |
dc.description | Capítulo del libro "Iterative Methods and Their Dynamics with Applications" | es_ES |
dc.description.abstract | Consider the problem of approximating a locally unique solution x of the nonlinear equation F(x) = 0, (21.1) where F is a Fréchet-differentiable operator defined on a convex subset D of a Banach space X with values in a Banach space Y. The equation (21.1) covers wide range of problems in classical analysis and applications [1-30]. Closed form solutions of these nonlinear equations exist only for few special cases which may not be of much practical value. Therefore solutions of these nonlinear equations (21.1) are approximated by iterative methods. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Iterative Methods and Their Dynamics with Applications: A Contemporary Study | es_ES |
dc.relation.uri | https://www.taylorfrancis.com/books/e/9781315153469 | es_ES |
dc.rights | restrictedAccess | es_ES |
dc.subject | computer science | es_ES |
dc.subject | mathematics & statistics | es_ES |
dc.subject | Scopus(2) | es_ES |
dc.subject | WOS(2) | es_ES |
dc.title | Ball convergence for eighth order method | es_ES |
dc.type | bookPart | es_ES |
reunir.tag | ~ARI | es_ES |
dc.identifier.doi | https://doi.org/10.1201/9781315153469 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |