Mostrar el registro sencillo del ítem

dc.contributor.authorArgyros, Ioannis K
dc.contributor.authorMagreñán, Á. Alberto
dc.date2017
dc.date.accessioned2020-09-02T14:19:49Z
dc.date.available2020-09-02T14:19:49Z
dc.identifier.isbn9781315153469
dc.identifier.urihttps://reunir.unir.net/handle/123456789/10501
dc.descriptionCapítulo del libro "Iterative Methods and Their Dynamics with Applications"es_ES
dc.description.abstractConsider the problem of approximating a locally unique solution x of the nonlinear equation F(x) = 0, (21.1) where F is a Fréchet-differentiable operator defined on a convex subset D of a Banach space X with values in a Banach space Y. The equation (21.1) covers wide range of problems in classical analysis and applications [1-30]. Closed form solutions of these nonlinear equations exist only for few special cases which may not be of much practical value. Therefore solutions of these nonlinear equations (21.1) are approximated by iterative methods.es_ES
dc.language.isoenges_ES
dc.publisherIterative Methods and Their Dynamics with Applications: A Contemporary Studyes_ES
dc.relation.urihttps://www.taylorfrancis.com/books/e/9781315153469es_ES
dc.rightsrestrictedAccesses_ES
dc.subjectcomputer sciencees_ES
dc.subjectmathematics & statisticses_ES
dc.subjectScopus(2)es_ES
dc.subjectWOS(2)es_ES
dc.titleBall convergence for eighth order methodes_ES
dc.typebookPartes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1201/9781315153469


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem