Mostrar el registro sencillo del ítem
Newton’s method for k-Fréchet differentiable operators
dc.contributor.author | Argyros, Ioannis K | |
dc.contributor.author | Magreñán, Á. Alberto | |
dc.date | 2017 | |
dc.date.accessioned | 2020-09-02T14:11:56Z | |
dc.date.available | 2020-09-02T14:11:56Z | |
dc.identifier.isbn | 9781315153469 | |
dc.identifier.uri | https://reunir.unir.net/handle/123456789/10499 | |
dc.description | Capítulo del libro "Iterative Methods and Their Dynamics with Applications" | es_ES |
dc.description.abstract | We determine a solution x of the equation F(x) = 0. where X and Y are Banach spaces, D ⊆ X a convex set and F : D → Y is a Fréchet-differentiable operator. In particular, we expand the applicability of the Newton’s method defined by xn + 1 = xn −[F′(xn)]−1F(xn), for each n = 0,1,2, …, (2.1) by considering weaker sufficient convergence criteria than in earlier studies [13]. We will denote along the chapter. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Iterative Methods and Their Dynamics with Applications: A Contemporary Study | es_ES |
dc.relation.uri | https://www.taylorfrancis.com/books/e/9781315153469 | es_ES |
dc.rights | restrictedAccess | es_ES |
dc.subject | computer science | es_ES |
dc.subject | mathematics & statistics | es_ES |
dc.subject | Scopus(2) | es_ES |
dc.subject | WOS(2) | es_ES |
dc.title | Newton’s method for k-Fréchet differentiable operators | es_ES |
dc.type | bookPart | es_ES |
reunir.tag | ~ARI | es_ES |
dc.identifier.doi | https://doi.org/10.1201/9781315153469 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |