Mostrar el registro sencillo del ítem

dc.contributor.authorChicharro, Francisco Israel
dc.contributor.authorCordero, Alicia
dc.contributor.authorGarrido, Neus
dc.contributor.authorTorregrosa, Juan Ramón
dc.date2020-06
dc.date.accessioned2020-08-07T09:40:14Z
dc.date.available2020-08-07T09:40:14Z
dc.identifier.issn0893-9659
dc.identifier.urihttps://reunir.unir.net/handle/123456789/10371
dc.description.abstractIterative methods with memory for solving nonlinear systems have been designed. For approximating the accelerating parameters the Kurchatov's divided difference is used as an approximation of the derivative of second order. The convergence of the proposed schemes is analyzed by means of Taylor expansions. Numerical examples are shown to compare the performance of the proposed schemes with other known ones, confirming the theoretical results.es_ES
dc.language.isoenges_ES
dc.publisherApplied Mathematics Letterses_ES
dc.relation.ispartofseries;vol. 104
dc.relation.urihttps://www.sciencedirect.com/science/article/abs/pii/S0893965920300707?via%3Dihubes_ES
dc.rightsrestrictedAccesses_ES
dc.subjectnonlinear systemses_ES
dc.subjectiterative methodses_ES
dc.subjectdivided difference operatores_ES
dc.subjectkurchatov divided differencees_ES
dc.subjectScopuses_ES
dc.subjectJCRes_ES
dc.titleOn the improvement of the order of convergence of iterative methods for solving nonlinear systems by means of memoryes_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1016/j.aml.2020.106277


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem