Mostrar el registro sencillo del ítem
Machine tools anomaly detection through nearly real-time data analysis
dc.contributor.author | Herranz, Gorka | |
dc.contributor.author | Antolínez, Alfonso | |
dc.contributor.author | Escartín, Javier | |
dc.contributor.author | Arregi, Amaia | |
dc.contributor.author | Gerrikagoitia, Jon Kepa | |
dc.date | 2019-12 | |
dc.date.accessioned | 2020-07-09T07:25:18Z | |
dc.date.available | 2020-07-09T07:25:18Z | |
dc.identifier.issn | 25044494 | |
dc.identifier.uri | https://reunir.unir.net/handle/123456789/10241 | |
dc.description.abstract | This work presents a new methodology for machine tools anomaly detection via operational data processing. The previous methodology has been field tested on a milling-boring machine in a real production environment. This paper also describes the data acquisition process, as well as the technical architecture needed for data processing. Subsequently, a technique for operational machine data segmentation based on dynamic time warping and hierarchical clustering is introduced. The formerly mentioned data segmentation and analysis technique allows for machine tools anomaly detection thanks to comparison between near real-time machine operational information, coming from strategically positioned sensors and outcomes collected from previous production cycles. Anomaly detection techniques shown in this article could achieve significant production improvements: “zero-defect manufacturing”, boosting factory efficiency, production plans scrap minimization, improvement of product quality, and the enhancement of overall equipment productivity. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Journal of Manufacturing and Materials Processing | es_ES |
dc.relation.ispartofseries | ;vol. 3, nº 4 | |
dc.relation.uri | https://www.mdpi.com/2504-4494/3/4/97 | es_ES |
dc.rights | openAccess | es_ES |
dc.subject | machine tools | es_ES |
dc.subject | anomaly detection | es_ES |
dc.subject | data science | es_ES |
dc.subject | Industry 4.0 | es_ES |
dc.subject | predictive maintenance | es_ES |
dc.subject | Internet of Things | es_ES |
dc.subject | Scopus | es_ES |
dc.subject | Emerging | es_ES |
dc.title | Machine tools anomaly detection through nearly real-time data analysis | es_ES |
dc.type | Articulo Revista Indexada | es_ES |
reunir.tag | ~ARI | es_ES |
dc.identifier.doi | https://doi.org/10.3390/jmmp3040097 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |