Mostrar el registro sencillo del ítem
Using multi-granular fuzzy linguistic modelling methods for supervised classification learning purposes
dc.contributor.author | Morente-Molinera, Juan Antonio | |
dc.contributor.author | Mezei, Jozsef | |
dc.contributor.author | Carlsson, Christer | |
dc.contributor.author | Herrera-Viedma, Enrique | |
dc.date | 2017 | |
dc.date.accessioned | 2020-06-04T11:26:52Z | |
dc.date.available | 2020-06-04T11:26:52Z | |
dc.identifier.isbn | 9781509060344 | |
dc.identifier.issn | 1098-7584 | |
dc.identifier.uri | https://reunir.unir.net/handle/123456789/10140 | |
dc.description.abstract | Classification learning is a very complex process whose success and failure ratio depends on a high amount of elements. One of them is the representation mean used for the data that is employed in the process. Granularity of the data used for classification learning purposes can affect dramatically the success and failure ratio of the obtained classification. In this paper, multi-granular fuzzy linguistic modelling methods are applied over the classification learning data in order to modify their granularity and increase the classification success ratio. Thanks to multi-granular fuzzy linguistic modelling methods, it is possible to automatically modify the data granularity in order to determine which data representation is the one that provides the better classification results in the learning process. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | 2017 IEEE International conference on fuzzy systems (FUZZ-IEEE) | es_ES |
dc.relation.uri | https://ieeexplore.ieee.org/document/8015406 | es_ES |
dc.rights | restrictedAccess | es_ES |
dc.subject | decision-making | es_ES |
dc.subject | networks | es_ES |
dc.subject | rules | es_ES |
dc.subject | WOS(2) | es_ES |
dc.subject | Scopus(2) | es_ES |
dc.title | Using multi-granular fuzzy linguistic modelling methods for supervised classification learning purposes | es_ES |
dc.type | conferenceObject | es_ES |
reunir.tag | ~ARI | es_ES |
dc.identifier.doi | https://doi.org/10.1109/FUZZ-IEEE.2017.8015406 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |