Mostrar el registro sencillo del ítem

dc.contributor.authorMorente-Molinera, Juan Antonio
dc.contributor.authorMezei, Jozsef
dc.contributor.authorCarlsson, Christer
dc.contributor.authorHerrera-Viedma, Enrique
dc.date2017
dc.date.accessioned2020-06-04T11:26:52Z
dc.date.available2020-06-04T11:26:52Z
dc.identifier.isbn9781509060344
dc.identifier.issn1098-7584
dc.identifier.urihttps://reunir.unir.net/handle/123456789/10140
dc.description.abstractClassification learning is a very complex process whose success and failure ratio depends on a high amount of elements. One of them is the representation mean used for the data that is employed in the process. Granularity of the data used for classification learning purposes can affect dramatically the success and failure ratio of the obtained classification. In this paper, multi-granular fuzzy linguistic modelling methods are applied over the classification learning data in order to modify their granularity and increase the classification success ratio. Thanks to multi-granular fuzzy linguistic modelling methods, it is possible to automatically modify the data granularity in order to determine which data representation is the one that provides the better classification results in the learning process.es_ES
dc.language.isoenges_ES
dc.publisher2017 IEEE International conference on fuzzy systems (FUZZ-IEEE)es_ES
dc.relation.urihttps://ieeexplore.ieee.org/document/8015406es_ES
dc.rightsrestrictedAccesses_ES
dc.subjectdecision-makinges_ES
dc.subjectnetworkses_ES
dc.subjectruleses_ES
dc.subjectWOS(2)es_ES
dc.subjectScopus(2)es_ES
dc.titleUsing multi-granular fuzzy linguistic modelling methods for supervised classification learning purposeses_ES
dc.typeconferenceObjectes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1109/FUZZ-IEEE.2017.8015406


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem