Mostrar el registro sencillo del ítem

dc.contributor.authorRaveane, William
dc.contributor.authorGonzález Arrieta, María Angélica
dc.date2014-12
dc.date.accessioned2020-02-10T12:09:00Z
dc.date.available2020-02-10T12:09:00Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/9818
dc.description.abstractWe introduce a hybrid system composed of a convolutional neural network and a discrete graphical model for image recognition. This system improves upon traditional sliding window techniques for analysis of an image larger than the training data by effectively processing the full input scene through the neural network in less time. The final result is then inferred from the neural network output through energy minimization to reach a more precize localization than what traditional maximum value class comparisons yield. These results are apt for applying this process in a mobile device for real time image recognition.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 03, nº 01
dc.relation.urihttps://www.ijimai.org/journal/node/706es_ES
dc.rightsopenAccesses_ES
dc.subjectcomputer visiones_ES
dc.subjectgraphical modeles_ES
dc.subjectimage recognitiones_ES
dc.subjectmobile devicees_ES
dc.subjectneural networkes_ES
dc.subjectIJIMAIes_ES
dc.titleNeural Networks through Shared Maps in Mobile Deviceses_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttp://dx.doi.org/10.9781/ijimai.2014.314


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem