Mostrar el registro sencillo del ítem

dc.contributor.authorYou, Haowen;
dc.contributor.authorRumbe, George
dc.date2010-12
dc.date.accessioned2019-10-24T11:34:54Z
dc.date.available2019-10-24T11:34:54Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/9468
dc.description.abstractAccurate diagnostic detection of the cancerous cells in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Bayesian classifier and other Artificial neural network classifiers (Backpropagation, linear programming, Learning vector quantization, and K nearest neighborhood) on the Wisconsin breast cancer classification problem.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 01, nº 03
dc.relation.urihttps://www.ijimai.org/journal/node/91es_ES
dc.rightsopenAccesses_ES
dc.subjectartificial neural networkses_ES
dc.subjectclassificationes_ES
dc.subjectbreast cancer diagnosises_ES
dc.subjectIJIMAIes_ES
dc.titleComparative Study of Classification Techniques on Breast Cancer FNA Biopsy Dataes_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttp://dx.doi.org/10.9781/ijimai.2010.131


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem