• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • In Press
    • In Press
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • In Press
    • In Press
    • Ver ítem

    Performance and Communication Cost of Deep Neural Networks in Federated Learning Environments: An Empirical Study

    Autor: 
    Alotaibi, Basmah K.
    ;
    Khan, Fakhri Alam
    ;
    Qawqzeh, Yousef
    ;
    Jeon, Gwanggil
    ;
    Camacho, David
    Fecha: 
    2024
    Palabra clave: 
    communication cost; Convolutional Neural Network (CNN); Deep Neural Networks; distributive learning; federated learning; neural networks; performance; Residual Neural Network (ResNet); Visual Geometry Group (VGG)
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Citación: 
    Alotaibi, B. K., Khan, F. A., Qawqzeh, Y., Jeon, G., & Camacho, D. Performance and Communication Cost of Deep Neural Networks in Federated Learning Environments: An Empirical Study.
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/17627
    DOI: 
    https://doi.org/10.9781/ijimai.2024.12.001
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3520
    Open Access
    Resumen:
    Federated learning, a distributive cooperative learning approach, allows clients to train the model locally using their data and share the trained model with a central server. When developing a federated learning environment, a deep/machine learning model needs to be chosen. The choice of the learning model can impact the model performance and the communication cost since federated learning requires the model exchange between clients and a central server in several rounds. In this work, we provide an empirical study to investigate the impact of using three different neural networks (CNN, VGG, and ResNet) models in image classification tasks using two different datasets (Cifar-10 and Cifar-100) in a federated learning environment. We investigate the impact of using these models on the global model performance and communication cost under different data distribution that are IID data and non-IID data distribution. The obtained results indicate that using CNN and ResNet models provide a faster convergence than VGG model. Additionally, these models require less communication costs. In contrast, the VGG model necessitates the sharing of numerous bits over several rounds to achieve higher accuracy under the IID data settings. However, its accuracy level is lower under non-IID data distributions than the other models. Furthermore, using a light model like CNN provides comparable results to the deeper neural network models with less communication cost, even though it may require more communication rounds to achieve the target accuracy in both datasets. CNN model requires fewer bits to be shared during communication than other models.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Performance and Communication Cost of Deep Neural Networks in Federated Learning Environments.pdf
    Tamaño: 1.927Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • In Press

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    785
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    400

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Marketing analysis of wineries using social collective behavior from users’ temporal activity on Twitter 

      Bello-Orgaz, Gema; Mesas, Rus M.; Zarco, Carmen ; Rodríguez, Víctor; Cordón, Oscar; Camacho, David (Information Processing and Management, 09/2020)
      Marketing professionals face challenges of increasing complexity to adapt classic marketing strategies to the phenomenon of social networks. Companies are currently trying to take advantage of the useful collective knowledge ...
    • Movimiento obrero y sindicatos. Un análisis desde el periodismo religioso en el tardofranquismo 

      Sanchez-Camacho, Jesus; Watt, Ninfa; Watt, Ninfa ; Urchaga-Litago, Jose David (Historia y comunicación social, 2021)
      En febrero de 1971 se publica la Ley Sindical 2/1971, una disposición que solo contiene novedades de carácter administrativo, sin establecer la libertad de asociación y participación ciudadana. En los últimos años del ...
    • Programa de Intervención Psicopedagógica de Alumnos con Dislexia 

      Camacho Conde, José Antonio ; Filgueira-Álvarez, David (ReiDoCrea, 2019)
      Antecedentes: Actualmente, cada vez resulta más habitual encontrarnos en las aulas con niños que presentan un trastorno de aprendizaje como es la dislexia. Se trata de un problema que dificulta el desarrollo adecuado de ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja