Mostrar el registro sencillo del ítem

dc.contributor.authorMartínez Núñez, Domingo
dc.contributor.authorLópez Hernández, Fernando Carlos
dc.contributor.authorRainer Granados, J. Javier
dc.date2024-08
dc.date.accessioned2024-09-04T08:45:08Z
dc.date.available2024-09-04T08:45:08Z
dc.identifier.citationD. Martínez Núñez, F. C. López Hernández, J. J. Rainer Granados. Automatic Surveillance of People and Objects on Railway Tracks, International Journal of Interactive Multimedia and Artificial Intelligence, (2024), http://dx.doi.org/10.9781/ijimai.2024.08.004es_ES
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/17348
dc.description.abstractThis paper describes the development and evaluation of a surveillance system for the detection of people and objects on railroad tracks in real time. Firstly, the paper evaluates several background subtraction techniques including CNNs and the object detection library called YOLO. Then we describe a novel strategy to mitigate the occlusion caused by the perspective of the camera and the integration of an alarms and pre-alarms policy. To evaluate its performance, we have implemented and automated the control and notification aspects of the surveillance system using computer vision techniques. This setup, running on a standard PC, achieves an average frame rate of 15 FPS and a latency of 0.54 seconds per frame, meeting real-time expectations in terms of both false alarms and precision in operational mode. The results from experiments conducted with a publicly available recorded video dataset from Metro de Madrid facilities demonstrate significant improvements over current state-of the-art solutions. These improvements include better accident anticipation and enhanced information provided to the operator using a standard low-cost camera. Consequently, we conclude that the approach described in this paper is both effective and a more practical, cost-efficient alternative to the other solutions reviewed.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;In Press
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/3478es_ES
dc.rightsopenAccesses_ES
dc.subjectcomputer visiones_ES
dc.subjectmachine learninges_ES
dc.subjectneural networkses_ES
dc.subjectRailway SafetyRailway Safetyes_ES
dc.subjectsurveillancees_ES
dc.subjectIJIMAIes_ES
dc.titleAutomatic Surveillance of People and Objects on Railway Trackses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~OPUes_ES
dc.identifier.doihttps://doi.org/10.9781/ijimai.2024.08.004


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem