• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2024
    • vol. 8, nº 7, september 2024
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2024
    • vol. 8, nº 7, september 2024
    • Ver ítem

    Energy-Aware Path Planning by Autonomous Underwater Vehicle in Underwater Wireless Sensor Networks for Safer Maritime Transportation

    Autor: 
    Acarer, Tayfun
    Fecha: 
    09/2024
    Palabra clave: 
    Artificial Intelligence (AI); Autonomous Underwater Vehicle; Energy-aware Path Planning; maritime commerce; maritime industry; maritime operations; optimization algorithm; ship management systems; safe sailing planning; Underwater Wireless Sensor Networks; water monitoring; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Citación: 
    T. Acarer. Energy-Aware Path Planning by Autonomous Underwater Vehicle in Underwater Wireless Sensor Networks for Safer Maritime Transportation, International Journal of Interactive Multimedia and Artificial Intelligence, vol. 8, no. 7, pp. 15-27, 2024, http://dx.doi.org/10.9781/ijimai.2024.08.003
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/17346
    DOI: 
    http://dx.doi.org/10.9781/ijimai.2024.08.003
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3476
    Open Access
    Resumen:
    Throughout history, maritime transportation has been preferred for international and intercontinental trade thanks to its lower cost than other transportation ways, which have a risk of ship accidents. To avoid these risks, underwater wireless sensor networks can be used as a robust and safe solution by monitoring maritime environment where energy resources are critical. Energy constraints must be solved to enable continuous data collection and communication for environmental monitoring and surveillance so they can last. Their energy limitations and battery replacement difficulties can be addressed with a path planning approach.This paper considers the energy-aware path planning problem with autonomous underwater vehicles by five commonly used approaches, namely, Ant Colony Optimization-based Approach, Particle Swarm Optimization-based Approach, Teaching Learning-based Optimization-based Approach, Genetic Algorithm-based Approach, Grey Wolf Optimizer-based Approach. Simulations show that the system converges faster and performs better with genetic algorithm than the others. This paper also considers the case where direct traveling paths between some node pairs should be avoided due to several reasons including underwater flows, too narrow places for travel, and other risks like changing temperature and pressure. To tackle this case, we propose a modified genetic algorithm, the Safety-Aware Genetic Algorithm-based Approach, that blocks the direct paths between those nodes. In this scenario, the Safety-Aware Genetic Algorithm-based approach provides just a 3% longer path than the Genetic Algorithm-based approach which is the best approach among all these approaches. This shows that the Safety-Aware Genetic Algorithm-based approach performs very robustly. With our proposed robust and energy-efficient path-planning algorithms, the data gathered by sensors can be collected very quickly with much less energy, which enables the monitoring system to respond faster for ship accidents. It also reduces total energy consumption of sensors by communicating them closely and so extends the network lifetime.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Energy-Aware Path Planning by Autonomous Underwater Vehicle in Underwater Wireless Sensor Networks for Safer Maritime Transportation.pdf
    Tamaño: 1.083Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 8, nº 7, september 2024

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    180
    191
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    87
    202

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja