• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2024
    • vol. 8, nº 7, september 2024
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2024
    • vol. 8, nº 7, september 2024
    • Ver ítem

    Semi-Supervised Machine Learning Approaches for Thyroid Disease Prediction and its Integration With the Internet of Everything

    Autor: 
    Agraz, Melih
    Fecha: 
    07/2024
    Palabra clave: 
    fixmatch; ioe medical systems; machine learning; thyroid disease; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Citación: 
    M. Agraz. Semi-Supervised Machine Learning Approaches for Thyroid Disease Prediction and its Integration With the Internet of Everything, International Journal of Interactive Multimedia and Artificial Intelligence, (2024), http://dx.doi.org/10.9781/ijimai.2024.07.006
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/17202
    DOI: 
    http://dx.doi.org/10.9781/ijimai.2024.07.006
    Open Access
    Resumen:
    Thyroid disorders are critical conditions that considerably affect a person’s general health, and may lead to additional health complications. Notably, these conditions often remain undetected in individuals who show "normal" results on traditional thyroid function tests. To enhance the diagnostic accuracy for thyroid disorders, such as hypothyroidism and hyperthyroidism, this study leveraged digital health records and explored semisupervised learning methods. We intentionally removed the labels from subjects initially categorized as "normal," incorporating them into our dataset as unlabeled data. The goal was to overcome the limitations of conventional diagnostic techniques, which may fail to detect subtle imbalances in thyroid hormones. In pursuit of this objective, we employed a combination of semi-supervised learning methods, namely FixMatch, Co-training, and self-training, in conjunction with supervised learning algorithms, specifically Naive Bayes and logistic regression. Our findings indicate that the FixMatch algorithm surpassed traditional supervised learning methods in various metrics, including accuracy (0.9054), sensitivity (0.9494), negative predictive value (0.9365), and F1 score (0.9146). Additionally, we propose a framework for integrating these diagnostic tools into the Internet of Everything (IoE) to promote early detection and facilitate improved healthcare outcomes. This research highlights the potential of semi-supervised learning techniques in the diagnosis of thyroid disorders and offers a roadmap for harnessing the IoE in healthcare advancement.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Semi-Supervised Machine Learning Approaches.pdf
    Tamaño: 1.350Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 8, nº 7, september 2024

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    153
    166
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    70
    173

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja