• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • In Press
    • In Press
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • In Press
    • In Press
    • Ver ítem

    Stacked LSTM for Short-Term Wind Power Forecasting Using Multivariate Time Series Data

    Autor: 
    Galphade, Manisha
    ;
    Nikam, V. B.
    ;
    Banerjee, Biplab
    ;
    Kiwelekar, Arvind W.
    ;
    Sharma, Priyanka
    Fecha: 
    07/2024
    Palabra clave: 
    deep learning; long short term memory; multivariate; renewable energy; time series data; wind power forecasting; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Citación: 
    M. Galphade, V. B. Nikam, B. Banerjee, A. W. Kiwelekar, P. Sharma. Stacked LSTM for Short-Term Wind Power Forecasting Using Multivariate Time Series Data, International Journal of Interactive Multimedia and Artificial Intelligence, (2024), http://dx.doi.org/10.9781/ijimai.2024.07.002
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/17173
    DOI: 
    http://dx.doi.org/10.9781/ijimai.2024.07.002
    Open Access
    Resumen:
    Currently, wind power is the fast growing area in the domain of renewable energy generation. Accurate prediction of wind power output in wind farms is crucial for addressing the challenges associated the power grid. This precise forecasting enables grid operators to enhance safety and optimize grid operations by effectively managing fluctuations in power generation, ensuring a reliable and stable energy supply. In recent years, there has been a significant rise in research and investigations conducted in this field. This study aims to develop a multivariate short-term wind power forecasting (WPF) model with the objective of enhancing forecasting precision. Among the various prediction models, deep learning models such as Long Short-Term Memory (LSTM) have demonstrated outstanding performance in the field of WPF. By adding multiple layers of LSTM networks, the model can capture more complex patterns. To improve the performance, data preprocessing is carried out using two techniques such as removal of missing values and imputing missing values using Random Forest Regressor (RFR). The comparison between the proposed Stacked LSTM model and other methods including vector autoregressive (VAR), Multiple Linear Regression, Gated Recurrent Unit (GRU) and Bidirectional LSTM (BiLSTM) has been experimented on two datasets. The experimental results show that after imputing missing values using RFR, the Stacked LSTM is optimized model for better performance than above mentioned reference models.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Stacked LSTM for Short-Term Wind Power Forecasting Using Multivariate Time Series Data.pdf
    Tamaño: 4.448Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • In Press

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    62
    343
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    67
    228

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Business and Social Behaviour Intelligence Analysis Using PSO 

      Bhaskar, Vinay S; Kumar Singh, Abhishek; Dhruw, Jyoti; Parashar, Anubha; Sharma, Mradula (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2014)
      The goal of this paper is to elaborate swarm intelligence for business intelligence decision making and the business rules management improvement. The paper introduces the decision making model which is based on the ...
    • N-grams Based Supervised Machine Learning Model for Mobile Agent Platform Protection against Unknown Malicious Mobile Agents 

      Bagga, Pallavi; Hans, Rahul; Sharma, Vipul (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2017)
      From many past years, the detection of unknown malicious mobile agents before they invade the Mobile Agent Platform has been the subject of much challenging activity. The ever-growing threat of malicious agents calls for ...
    • Multi-sense Embeddings Using Synonym Sets and Hypernym Information from Wordnet 

      Prasad Mudigonda, Krishna Siva; Sharma, Poonam (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2020)
      Word embedding approaches increased the efficiency of natural language processing (NLP) tasks. Traditional word embeddings though robust for many NLP activities, do not handle polysemy of words. The tasks of semantic ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja